如圖,某住宅小區(qū)的平面圖呈扇形AOC.小區(qū)的兩個出入口設(shè)置在點A及點C處,小區(qū)里有兩條筆直的小路AD、DC,且拐彎處的轉(zhuǎn)角為120°.已知某人從C沿CD走到D用了10分鐘,從D沿DA走到A用了6分鐘.若此人步行的速度為每分鐘50米,求該扇形的半徑OA的長(精確到1米).

答案:解法一:設(shè)該扇形的半徑為r米.

由題意,得CD=500(米),DA=300(米),∠CDO=60°.                                

在△CDO中,CD2+OD2-2·CD·OD·cos60°=OC2,                                   

即5002+(r-300)2-2×500×(r-300)×=r2,                                        

解得r=≈445(米).

答:該扇形的半徑OA的長約為445米.                                        

解法二:連接AC,作OH⊥AC,交AC于H,                                      

由題意,得CD=500(米),AD=300(米),∠CDA=120°.                              

在△ACD中,AC2=CD2+AD2-2·CD·AD·cos120°

=5002+3002+2×500×300×=7002,

∴AC=700(米).                                                              

cos∠CAD=.                                        

在Rt△HAO中,AH=350(米),

cos∠HAO=,

∴OA==≈445(米).

答:該扇形的半徑OA的長約為445米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,某住宅小區(qū)的平面圖呈圓心角為120°的扇形AOB,小區(qū)的兩個出入口設(shè)置在點A及點C處,且小區(qū)里有一條平行于BO的小路CD,已知某人從C沿CD走到D用了10分鐘,從D沿DA走到A用了6分鐘,若此人步行的速度為每分鐘50米,求該扇形的半徑OA的長(精確到1米)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,某住宅小區(qū)的平面圖呈圓心角為120°的扇形AOB,C是該小區(qū)的一個出入口,且小區(qū)里有一條平行于AO的小路CD.已知某人從O沿OD走到D用了2分鐘,從D沿著DC走到C用了3分鐘.若此人步行的速度為每分鐘50米,則該扇形的半徑為
 
米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,某住宅小區(qū)的平面圖呈扇形AOC.小區(qū)的兩個出入口設(shè)置在點A及點C處,小區(qū)里有兩條筆直的小路AD,DC,且拐彎處的轉(zhuǎn)角為120°.已知某人從C沿CD走到D用了10分鐘,從D沿DA走到A用了6分鐘.若此人步行的速度為每分鐘50米,則該扇形的半徑OA的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某住宅小區(qū)的平面圖呈扇形AOC.小區(qū)的兩個出入口設(shè)置在點A及點C處,小區(qū)里有兩條筆直的小路AD,CD,且拐彎處的轉(zhuǎn)角為120°.已知某人從C沿CD走到D用了10分鐘,從D沿DA走到A用了6分鐘.若此人步行的速度為每分鐘50米,求該扇形的半徑OA的長(精確到1米).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(13’)如圖,某住宅小區(qū)的平面圖呈圓心角為120°的扇形AOB,小區(qū)的兩個出入口設(shè)置在點A及點C處,且小區(qū)里有一條平行于BO的小路CD,已知某人從C沿CD走到D用了10分鐘,從D沿DA走到A用了6分鐘,若此人步行的速度為每分鐘50米,求該扇形的半徑OA的長(精確到1米).

查看答案和解析>>

同步練習(xí)冊答案