【題目】已知函數(shù) .
(1)當(dāng)a=3時,求函數(shù) 在 上的最大值和最小值;
(2)函數(shù) 既有極大值又有極小值,求實數(shù)a的取值范圍.
【答案】
(1)解:a=3時, ,
函數(shù) 在區(qū)間 僅有極大值點x=1,故這個極大值點也是最大值點,
故函數(shù)在區(qū)間 最大值是 ,
又 ,故 .
故函數(shù)在 上的最小值為
(2)解:
若 既有極大值又有極小值,則 有兩個不同正根 ,即 有兩個不同正根,故a應(yīng)滿足
【解析】(1)將a=3代入f(x)中并求出f(x),根據(jù)“當(dāng)f(x)0(0)時,函數(shù)f(x)單調(diào)遞增(減)”確定函數(shù)f(x)在[,2]內(nèi)的單調(diào)性,從而可求出f(x)的最大值,比較f(),f(2)的大小,進而可求出f(x)的最小值;(2)求出f(x)的定義域,求導(dǎo),若f(x)既有極大值又有極小值,則f(x)=0有兩個不同正根,列出不等式組即可求解.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)計算f(3),f(4),f( )及f( )的值;
(2)由(1)的結(jié)果猜想一個普遍的結(jié)論,并加以證明;
(3)求值f(1)+f(2)+…+f(2017)+f( )+f( )+…+f( ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,
(1)若m=2,求f(x)的最小值;
(2)若f(x)恰有2個零點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A(n)表示正整數(shù)n的個位數(shù),an=A(n2)﹣A(n),A為數(shù)列{an}的前202項和,函數(shù)f(x)=ex﹣e+1,若函數(shù)g(x)滿足f[g(x)﹣ ]=1,且bn=g(n)(n∈N*),則數(shù)列{bn}的前n項和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店經(jīng)營的一種商品進價是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷量P(件)與單價x(元)之間的關(guān)系如圖折線所示,該網(wǎng)店與這種商品有關(guān)的周開支均為25元.
(I)根據(jù)周銷量圖寫出周銷量P(件)與單價x(元)之間的函數(shù)關(guān)系式;
(Ⅱ)寫出周利潤y(元)與單價x(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷售價格為多少元時,周利潤最大?并求出最大周利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為R的偶函數(shù)f(x)在(﹣∞,0]上是減函數(shù),且 =2,則不等式f(log4x)>2的解集為( )
A.
B.(2,+∞)
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:
(1)長軸長是短軸長的 倍,且過點 ;
(2)橢圓過點 ,離心率 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程.
①當(dāng)切線在兩坐標(biāo)軸上的截距為零時,設(shè)切線方程為y=kx,
則 ,解得k=2± ,
從而切線方程為y=(2± )x.
②當(dāng)切線在兩坐標(biāo)軸上的截距不為零時,設(shè)切線方程為x+y-a=0,則 ,解得a=-1或3,
從而切線方程為x+y+1=0或x+y-3=0.
綜上,切線方程為(2+ )x-y=0或(2- )x-y=0或x+y+1=0或x+y-3=0
(2)點P在直線l:2x-4y+3=0上,過點P作圓C的切線,切點記為M,求使|PM|最小的點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com