【題目】某校高一年級有甲,乙,丙三位學生,他們前三次月考的物理成績?nèi)绫恚?/span>

第一次月考物理成績

第二次月考物理成績

第三次月考物理成績

學生甲

80

85

90

學生乙

81

83

85

學生丙

90

86

82

則下列結(jié)論正確的是( 。

A. 甲,乙,丙第三次月考物理成績的平均數(shù)為86

B. 在這三次月考物理成績中,甲的成績平均分最高

C. 在這三次月考物理成績中,乙的成績最穩(wěn)定

D. 在這三次月考物理成績中,丙的成績方差最大

【答案】C

【解析】

由表格中數(shù)據(jù),利用平均數(shù)公式以及方差的定義與性質(zhì),對選項中的命題逐一判斷正誤即可.

由表格中數(shù)據(jù)知,甲、乙、丙的第三次月考物理成績的平均數(shù)為

,錯誤

這三次月考物理成績中,甲的成績平均分為85,

丙的成績平均分最高為,錯誤;

這三次月考物理成績中,乙的成績波動性最小,最穩(wěn)定,∴正確;

這三次月考物理成績中,甲的成績波動性最大,方差最大,∴錯誤.

故選C.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知各項均不為零的數(shù)列{an},定義向量 , ,n∈N* . 下列命題中真命題是(
A.若?n∈N*總有 成立,則數(shù)列{an}是等差數(shù)列
B.若?n∈N*總有 成立,則數(shù)列{an}是等比數(shù)列
C.若?n∈N*總有 成立,則數(shù)列{an}是等差數(shù)列
D.若?n∈N*總有 成立,則數(shù)列{an}是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合.對于的一個子集,若存在不大于的正整數(shù),使得對于中的任意一對元素,都有,則稱具有性質(zhì).

(Ⅰ)當時,試判斷集合是否具有性質(zhì)?并說明理由.

(Ⅱ)若時,

①若集合具有性質(zhì),那么集合是否一定具有性質(zhì)?并說明理由;

②若集合具有性質(zhì),求集合中元素個數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,若實數(shù)a滿足f(log2a)+f)≤2f(1),則a的取值范圍是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)fx)=ax2+bx,(a,b為常數(shù),且a≠0)滿足條件f(2-x)=fx-1),且方程fx)=x有兩個相等的實根.

(1)求fx)的解析式;

(2)設(shè)gx)=kx+1,若Fx)=gx)-fx),求Fx)在[1,2]上的最小值;

(3)是否存在實數(shù)m,nmn),使fx)的定義域和值域分別為[m,n][2m,2n],若存在,求出m,n的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=,若g(x)=f(x)-a恰好有3個零點,則a的取值范圍為( 。

A. B. C. D.

【答案】D

【解析】

恰好有3個零點, 等價于的圖象有三個不同的交點,

作出的圖象,根據(jù)數(shù)形結(jié)合可得結(jié)果.

恰好有3個零點,

等價于有三個根,

等價于的圖象有三個不同的交點,

作出的圖象,如圖,

由圖可知,

時,的圖象有三個交點,

即當時,恰好有3個零點,

所以的取值范圍是,故選D.

【點睛】

本題主要考查函數(shù)的零點與分段函數(shù)的性質(zhì),屬于難題. 函數(shù)的性質(zhì)問題以及函數(shù)零點問題是高考的高頻考點,考生需要對初高中階段學習的十幾種初等函數(shù)的單調(diào)性、奇偶性、周期性以及對稱性非常熟悉;另外,函數(shù)零點的幾種等價形式:函數(shù)的零點函數(shù)軸的交點方程的根函數(shù)的交點.

型】單選題
結(jié)束】
13

【題目】設(shè)集合A={0,log3(a+1)},B={a,a+b}若A∩B={1},則b=______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)從區(qū)間內(nèi)任意選取一個實數(shù),求的概率;

(2)從區(qū)間內(nèi)任意選取一個整數(shù),求的概率

【答案】(1) .(2) .

【解析】試題(1)根據(jù)幾何概型概率公式,分別求出滿足不等式的的區(qū)間長度與區(qū)間總長度,求比值即可;(2) 區(qū)間內(nèi)共有個數(shù),滿足的整數(shù)為共有 個,根據(jù)古典概型概率公式可得結(jié)果.

試題解析: (1),,

故由幾何概型可知,所求概率為.

(2),

則在區(qū)間內(nèi)滿足的整數(shù)為5,6,7,8,9,共有5

故由古典概型可知,所求概率為.

【方法點睛】本題題主要考查古典概型及“區(qū)間型”的幾何概型,屬于中檔題. 解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,區(qū)間型,求與區(qū)間有關(guān)的幾何概型問題關(guān)鍵是計算問題題的總區(qū)間 以及事件的區(qū)間;幾何概型問題還有以下幾點容易造成失分,在備考時要高度關(guān)注:(1)不能正確判斷事件是古典概型還是幾何概型導致錯誤;(2)基本裏件對應的區(qū)域測度把握不準導致錯誤 ;(3)利用幾何概型的概率公式時 , 忽視驗證事件是否等可能性導致錯誤.

型】解答
結(jié)束】
18

【題目】已知函數(shù)f(x)=ax(a>0且a≠1)的圖象過的(-2,16).

(1)求函數(shù)f(x)的解析式;

(2)若f(2m+5)<f(3m+3),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的頂點A的坐標為(5,1),AB邊上的中線CM所在直線方程為2x-y-5=0,AC邊上的高BH所在的直線方程為x-2y-5=0.

(Ⅰ)求頂點C的坐標;

(Ⅱ)求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)y=f(x)滿足:對y=f(x)圖象上任意點P(x1 , f(x1)),總存在點P′(x2 , f(x2))也在y=f(x)圖象上,使得x1x2+f(x1)f(x2)=0成立,稱函數(shù)y=f(x)是“特殊對點函數(shù)”,給出下列五個函數(shù):
①y=x1;
②y=log2x;
③y=sinx+1;
④y=ex﹣2;
⑤y=
其中是“特殊對點函數(shù)”的序號是(寫出所有正確的序號)

查看答案和解析>>

同步練習冊答案