【題目】如圖甲,E是邊長(zhǎng)等于2的正方形的邊CD的中點(diǎn),以AE、BE為折痕將△ADE與△BCE折起,使D,C重合(仍記為D),如圖乙.
(1)探索:折疊形成的幾何體中直線DE的幾何性質(zhì)(寫出一條即可,不含DE⊥DA,DE⊥DB,說(shuō)明理由);
(2)求二面角D-BE-A的余弦值
【答案】(1)幾何性質(zhì)見(jiàn)解析,理由見(jiàn)解析;(2)
【解析】
(1)根據(jù)折前折后折痕同側(cè)的位置關(guān)系、長(zhǎng)度不變,可以證明平面,據(jù)此結(jié)論也可得到,或與平面內(nèi)任一直線都垂直,也可計(jì)算直線與平面所成角等于;
(2)建立空間直角坐標(biāo)系,利用向量法可求二面角的余弦值.
(1)性質(zhì)1:平面.
證明如下:翻折前,,
翻折后仍然,
且,
則平面.
性質(zhì)2:.
證明如下:
與性質(zhì)1證明方法相同,得到平面.
又因平面,則.
性質(zhì)3:與平面內(nèi)任一直線都垂直.
證明如下:
與性質(zhì)1證明方法相同,得到平面,
從而與平面內(nèi)任一直線都垂直.
性質(zhì)4:直線與平面所成角等于.
證明如下:
如圖,取的中點(diǎn),連接,,
由得,
與性質(zhì)2證明相同,得,
再因,則平面,進(jìn)而平面平面.
作于,則平面,
即就是直線與平面所成的角.
,,,.
(2)與(1)之性質(zhì)4證明相同,得到,平面,,平面內(nèi),則平面平面.
以為坐標(biāo)原點(diǎn)、為軸建立如圖所示的空間直角坐標(biāo)系.
,
,,則平面的一個(gè)法向量,
,,,.
設(shè)是平面的法向量,
則
取,求得一個(gè)法向量
記二面角的大小為,則與相等或互補(bǔ),
,
因是銳角,則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)拋物線C:x2=4y的準(zhǔn)線上任意一點(diǎn)P作拋物線的切線PA,PB,切點(diǎn)分別為A,B,則A點(diǎn)到準(zhǔn)線的距離與B點(diǎn)到準(zhǔn)線的距離之和的最小值是( )
A.7B.6C.5D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線焦點(diǎn)為,過(guò)上一點(diǎn)作切線,交軸于點(diǎn),過(guò)點(diǎn)作直線交于點(diǎn).
(1)證明:;
(2)設(shè)直線,的斜率為,的面積為,若,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)為曲線上位于第一,二象限的兩個(gè)動(dòng)點(diǎn),且,射線交曲線分別于,求面積的最小值,并求此時(shí)四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,ABCD為菱形,平面ABCD,連接AC,BD交于點(diǎn)O,,,E是棱PC上的動(dòng)點(diǎn),連接DE.
(1)求證:平面平面;
(2)當(dāng)面積的最小值是4時(shí),求此時(shí)點(diǎn)E到底面ABCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線PQ與⊙O相切于點(diǎn)A,AB是⊙O的弦,∠PAB的平分線AC交⊙O于點(diǎn)C,連結(jié)CB,并延長(zhǎng)與直線PQ相交于點(diǎn)Q,若AQ=6,AC=5.
(Ⅰ)求證:QC2﹣QA2=BCQC;
(Ⅱ)求弦AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】試在①,②,③三個(gè)條件中選兩個(gè)條件補(bǔ)充在下面的橫線處,使得面ABCD成立,請(qǐng)說(shuō)明理由,并在此條件下進(jìn)一步解答該題:
如圖,在四棱錐中,,底ABCD為菱形,若__________,且,異面直線PB與CD所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形是梯形,如圖,,,,為的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置(如圖2),且
(1)求證:平面平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com