【題目】已知函數(shù) ( )
(1)求函數(shù) 的單調(diào)增區(qū)間;
(2)若函數(shù) 在 上的最小值為 ,求 的值.
【答案】
(1)解:由題意, 的定義域為 ,且 .
當(dāng) 時, ,∴ 的單調(diào)增區(qū)間為 .
當(dāng) 時,令 ,得 ,∴ 的單調(diào)增區(qū)間為 .
(2)解:由(1)可知, .
若 ,則 ,即 在 上恒成立, 在 上為增函數(shù),
∴ ,∴ (舍去).
若 ,則 ,即 在 上恒成立, 在 上為減函數(shù),
∴ ,∴ (舍去).
若 ,當(dāng) 時, ,∴ 在 上為減函數(shù),
當(dāng) 時, ,所以 上為增函數(shù),
∴ ,∴
綜上所述, .
【解析】(1)先求函數(shù)f(x)的定義域,再求f(x),對參數(shù)a進(jìn)行分類討論,由f(x)0得到函數(shù)f(x)的單調(diào)增區(qū)間;(2)由(1)可知f(x),對參數(shù)a進(jìn)行分類討論,由f(x)0(f(x)0)得到函數(shù)f(x)的單調(diào)增(減)區(qū)間,確定函數(shù)f(x)的最小值,從而得到參數(shù)a的值.
【考點精析】利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)對題目進(jìn)行判斷即可得到答案,需要熟知一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,設(shè)橢圓 =1(a>b>0)的左、右焦點分別為F1 , F2 , 右頂點為A,上頂點為B,離心率為e.橢圓上一點C滿足:C在x軸上方,且CF1⊥x軸.
(1)若OC∥AB,求e的值;
(2)連結(jié)CF2并延長交橢圓于另一點D若 ≤e≤ ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,設(shè)橢圓 =1(a>b>0)的左、右焦點分別為F1 , F2 , 右頂點為A,上頂點為B,離心率為e.橢圓上一點C滿足:C在x軸上方,且CF1⊥x軸.
(1)若OC∥AB,求e的值;
(2)連結(jié)CF2并延長交橢圓于另一點D若 ≤e≤ ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】美索不達(dá)米亞平原是人類文明的發(fā)祥地之一.美索不達(dá)米亞人善于計算,他們創(chuàng)造了優(yōu)良的計數(shù)系統(tǒng),其中開平方算法是最具有代表性的.程序框圖如圖所示,若輸入a,n,ξ的值分別為8,2,0.5,(每次運算都精確到小數(shù)點后兩位)則輸出結(jié)果為( )
A.2.81
B.2.82
C.2.83
D.2.84
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知半徑為1的球O內(nèi)切于正四面體A﹣BCD,線段MN是球O的一條動直徑(M,N是直徑的兩端點),點P是正四面體A﹣BCD的表面上的一個動點,則 的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間他們參加的5次預(yù)寒成績記錄如下:
甲:82,82,79,95,87
乙:95,75,80,90,85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)求甲、乙兩人成績的平均數(shù)與方差;
(3)若現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,你認(rèn)為選派哪位學(xué)生參加合適,說明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) 是奇函數(shù) ( )的導(dǎo)函數(shù), ,當(dāng) 時, 則使得 成立的 的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,且滿足Sn+n=2an(n∈N*).
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)若bn=an+2n+1,數(shù)列{bn}的前n項和為Tn..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長度單位.已知曲線 的極坐標(biāo)方程為 ,直線 的參數(shù)方程為
( 為參數(shù), 為直線的傾斜角).
(1)寫出直線 的普通方程和曲線 的直角坐標(biāo)方程;
(2)若直線 與曲線 有唯一的公共點,求角 的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com