【題目】某學(xué)校高三年級共有1000名學(xué)生,其中男生650人,女生350人,為了調(diào)查學(xué)生周末的休閑方式,用分層抽樣的方法抽查了200名學(xué)生.

)完成下面的列聯(lián)表;

不喜歡運動

喜歡運動

合計

女生

50

男生

合計

100

200

)在抽取的樣本中,調(diào)查喜歡運動女生的運動時間,發(fā)現(xiàn)她們的運動時間介于30分鐘到90分鐘之間,右圖是測量結(jié)果的頻率分布直方圖,若從區(qū)間段的所有女生中隨機抽取兩名女生,求她們的運動時間在同一區(qū)間段的概率.

【答案】(Ⅰ)見解析(Ⅱ)

【解析】試題分析:(1)根據(jù)分層抽樣的定義,確定抽取男女生人數(shù),再填列聯(lián)表;(2)先根據(jù)頻率分布直方圖確定 人數(shù),再利用枚舉法確定總事件數(shù),以及在同一區(qū)間段的事件數(shù),最后根據(jù)古典概型概率公式求概率

試題解析:(Ⅰ)根據(jù)分層抽樣的定義,可知抽取男生130人,女生70人,

不喜歡運動

喜歡運動

合計

女生

50

20

70

男生

50

80

130

合計

100

100

200

(Ⅱ)由直方圖可知在內(nèi)的人數(shù)為2人,設(shè)為,

內(nèi)的人數(shù)為4人,設(shè)為.

設(shè)“兩人的運動時間在同一區(qū)間段”的事件為.

從中抽取兩名女生的可能情況有:

,

兩人的運動時間恰好在同一區(qū)間段的可能情況有7種.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,且 .

(Ⅰ)設(shè) ,求的單調(diào)區(qū)間及極值;

(Ⅱ)證明:函數(shù)的圖象在函數(shù)的圖象的上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線和圓,直線經(jīng)過拋物線的焦點,依次交拋物線與圓四點, ,的值為(

A. B. C. 1 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究某藥品的療效,選取若干名志愿者進行臨床試驗,所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組,第二組,…,第五組,如圖是根據(jù)試驗數(shù)據(jù)制成的頻率分布直方圖.已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為(  )

A. 6 B. 8

C. 12 D. 18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域為的偶函數(shù)滿足對,有,且當(dāng)時, ,若函數(shù)上至多有三個零點,則的取值范圍是

__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點坐標(biāo)為

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點,過點的直線(與軸不重合)與橢圓交于兩點,直線與直線相交于點,試證明:直線軸平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

)若,求函數(shù)的單調(diào)區(qū)間.

)若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)的取值范圍.

)過坐標(biāo)原點作曲線的切線,證明:切點的橫坐標(biāo)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的極坐標(biāo)方程是,以極點為平面直角坐標(biāo)系的原點,極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是 (為參數(shù)).

(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;

(2)若直線與曲線相交于兩點,且,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=mx2mx-1.

(1)若對于x∈R,f(x)<0恒成立,求實數(shù)m的取值范圍;

(2)若對于x∈[1,3],f(x)<5-m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案