【題目】如圖,在四棱柱中,點分別為的中點,側棱底面.

1)求證://平面;

2)求二面角的正弦值

【答案】1)證明見解析(2

【解析】

1)根據(jù)題意,以為坐標原點建立空間直角坐標系,寫出各個點的坐標,可通過證明與平面的法向量垂直,來證明//平面.

2)根據(jù)(1)中建立的平面直角坐標系,分別求得平面的法向量與平面的法向量,即可求得兩個平面夾角的余弦值,結合同角三角函數(shù)關系式即可求得二面角的正弦值.

1)證明:根據(jù)題意,以為坐標原點,軸,軸,軸建立如下圖所示的空間直角坐標系:

分別為的中點, ,

,

,

所以

依題意可知為平面的一個法向量

所以

又因為直線平面

所以平面

2

為平面的法向量,

,即

不妨設,可得

為平面的一個法向量,

,又,得

不妨設,可得

因此有,

于是

所以二面角的正弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點與點都在橢圓上,且的左集點為,過點的直線交橢圓,兩點.

1)求的方程;

2)若以為直徑的圓經過點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)設,求的值;

(2)已知cos(75°+α),且﹣180°<α<﹣90°,求cos(15°﹣α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著“互聯(lián)網+交通”模式的迅猛發(fā)展,“共享助力單車”在很多城市相繼出現(xiàn).某“共享助力單車”運營公司為了解某地區(qū)用戶對該公司所提供的服務的滿意度,隨機調查了100名用戶,得到用戶的滿意度評分(滿分10分),現(xiàn)將評分分為5組,如下表:

組別

滿意度評分

[0,2)

[2,4)

[4,6)

[6,8)

[8,10]

頻數(shù)

5

10

a

32

16

頻率

0.05

b

0.37

c

0.16

(1)求表格中的a,b,c的值;

(2)估計用戶的滿意度評分的平均數(shù);

(3)若從這100名用戶中隨機抽取25人,估計滿意度評分低于6分的人數(shù)為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線的參數(shù)方程為t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,直線與曲線C交于兩點.

1)求直線的普通方程和曲線C的直角坐標方程;

2)求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,點的中點,點的中點,將分別沿折起,使兩點重合于,連接.

1)求證:

2)點上一點,若平面,則為何值?并說明理由.

3)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)有兩個分廠生產某種零件,按規(guī)定內徑尺寸(單位:mm)的值落在[29.94,30.06)的零件為優(yōu)質品.從兩個分廠生產的零件中各抽出了500件,量其內徑尺寸,得結果如下表:

甲廠:

分組

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.98,30.02)

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

頻數(shù)

12

63

86

182

92

61

4

乙廠:

分組

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.98,30.02)

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

頻數(shù)

29

71

85

159

76

62

18

(1)試分別估計兩個分廠生產的零件的優(yōu)質品率;

(2)由以上統(tǒng)計數(shù)據(jù)填下面列聯(lián)表,并問是否有的把握認為“兩個分廠生產的零件的質量有差異”.

甲 廠

乙 廠

合計

優(yōu)質品

非優(yōu)質品

合計

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)時都取得極值.

(1)求的值與函數(shù)的單調區(qū)間;

(2)若對,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為響應“生產發(fā)展、生活富裕、鄉(xiāng)風文明、村容整潔、管理民主”的社會主義新農村建設,某自然村將村邊一塊廢棄的扇形荒地(如圖)租給蜂農養(yǎng)蜂、產蜜與售蜜.已知扇形AOB中,,百米),荒地內規(guī)劃修建兩條直路AB,OC,其中點C在弧AB上(CA,B不重合),在小路ABOC的交點D處設立售蜜點,圖中陰影部分為蜂巢區(qū),空白部分為蜂源植物生長區(qū).,蜂巢區(qū)的面積為S(平方百米).

1)求S關于的函數(shù)關系式;

2)當為何值時,蜂巢區(qū)的面積S最小,并求此時S的最小值.

查看答案和解析>>

同步練習冊答案