【題目】給定常數(shù)c>0,定義函數(shù)f(x)=2|x+c+4|﹣|x+c|.?dāng)?shù)列a1 , a2 , a3 , …滿足an+1=f(an),n∈N*
(1)若a1=﹣c﹣2,求a2及a3
(2)求證:對(duì)任意n∈N* , an+1﹣an≥c;
(3)是否存在a1 , 使得a1 , a2 , …,an , …成等差數(shù)列?若存在,求出所有這樣的a1;若不存在,說明理由.

【答案】
(1)

解:a2=f(a1)=f(﹣c﹣2)=2|﹣c﹣2+c+4|﹣|﹣c﹣2+c|=4﹣2=2,

a3=f(a2)=f(2)=2|2+c+4|﹣|2+c|=2(6+c)﹣(c+2)=10+c.


(2)

證明:由已知可得f(x)=

當(dāng)an≥﹣c時(shí),an+1﹣an=c+8>c;

當(dāng)﹣c﹣4≤an<﹣c時(shí),an+1﹣an=2an+3c+8≥2(﹣c﹣4)+3c+8=c;

當(dāng)an<﹣c﹣4時(shí),an+1﹣an=﹣2an﹣c﹣8>﹣2(﹣c﹣4)﹣c﹣8=c.

∴對(duì)任意n∈N*,an+1﹣an≥c;


(3)

解:假設(shè)存在a1,使得a1,a2,…,an,…成等差數(shù)列.

由(2)及c>0,得an+1≥an,即{an}為無窮遞增數(shù)列.

又{an}為等差數(shù)列,所以存在正數(shù)M,當(dāng)n>M時(shí),an≥﹣c,從而an+1=f(an)=an+c+8,由于{an}為等差數(shù)列,

因此公差d=c+8.

①當(dāng)a1<﹣c﹣4時(shí),則a2=f(a1)=﹣a1﹣c﹣8,

又a2=a1+d=a1+c+8,故﹣a1﹣c﹣8=a1+c+8,即a1=﹣c﹣8,從而a2=0,

當(dāng)n≥2時(shí),由于{an}為遞增數(shù)列,故an≥a2=0>﹣c,

∴an+1=f(an)=an+c+8,而a2=a1+c+8,故當(dāng)a1=﹣c﹣8時(shí),{an}為無窮等差數(shù)列,符合要求;

②若﹣c﹣4≤a1<﹣c,則a2=f(a1)=3a1+3c+8,又a2=a1+d=a1+c+8,∴3a1+3c+8=a1+c+8,得a1=﹣c,應(yīng)舍去;

③若a1≥﹣c,則由an≥a1得到an+1=f(an)=an+c+8,從而{an}為無窮等差數(shù)列,符合要求.

綜上可知:a1的取值范圍為{﹣c﹣8}∪[﹣c,+∞).


【解析】(1)對(duì)于分別取n=1,2,an+1=f(an),n∈N* . 去掉絕對(duì)值符合即可得出;(2)由已知可得f(x)= ,分三種情況討論即可證明;(3)由(2)及c>0,得an+1≥an , 即{an}為無窮遞增數(shù)列.分以下三種情況討論:當(dāng)a1<﹣c﹣4時(shí),當(dāng)﹣c﹣4≤a1<﹣c時(shí),當(dāng)a1≥﹣c時(shí).即可得出a1的取值范圍.
【考點(diǎn)精析】本題主要考查了等差關(guān)系的確定的相關(guān)知識(shí)點(diǎn),需要掌握如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),即=d ,(n≥2,n∈N)那么這個(gè)數(shù)列就叫做等差數(shù)列才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)fx)=aa為常數(shù)).

1)求a的值;

2)若函數(shù)gx)=|2x+1fx|k2個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍;

3)若x[2,﹣1]時(shí),不等式fx恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是C1D1,CC1的中點(diǎn),則異面直線AEBF所成角的余弦值為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分形幾何學(xué)是一門以不規(guī)則幾何形態(tài)為研究對(duì)象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長(zhǎng)度為a,在線段上取兩個(gè)點(diǎn),,使得,以為一邊在線段的上方做一個(gè)正六邊形,然后去掉線段,得到圖2中的圖形;對(duì)圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:

記第個(gè)圖形(圖1為第1個(gè)圖形)中的所有線段長(zhǎng)的和為,現(xiàn)給出有關(guān)數(shù)列的四個(gè)命題:

①數(shù)列是等比數(shù)列;

②數(shù)列是遞增數(shù)列;

③存在最小的正數(shù),使得對(duì)任意的正整數(shù) ,都有 ;

④存在最大的正數(shù),使得對(duì)任意的正整數(shù),都有

其中真命題的序號(hào)是________________(請(qǐng)寫出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0
(1)若y=f(x)在[﹣ , ]上單調(diào)遞增,求ω的取值范圍;
(2)令ω=2,將函數(shù)y=f(x)的圖象向左平移 個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,區(qū)間[a,b](a,b∈R,且a<b)滿足:y=g(x)在[a,b]上至少含有30個(gè)零點(diǎn).在所有滿足上述條件的[a,b]中,求b﹣a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的兩個(gè)焦點(diǎn)分別為F1(﹣1,0)、F2(1,0),短軸的兩個(gè)端點(diǎn)分別為B1 , B2
(1)若△F1B1B2為等邊三角形,求橢圓C的方程;
(2)若橢圓C的短軸長(zhǎng)為2,過點(diǎn)F2的直線l與橢圓C相交于P,Q兩點(diǎn),且 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)z1 , z2是復(fù)數(shù),則下列命題中的假命題是(
A.若|z1﹣z2|=0,則 =
B.若z1= ,則 =z2
C.若|z1|=|z2|,則z1? =z2?
D.若|z1|=|z2|,則z12=z22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一場(chǎng)娛樂晚會(huì)上,有5位民間歌手(1至5號(hào))登臺(tái)演唱,由現(xiàn)場(chǎng)數(shù)百名觀眾投票選出最受歡迎歌手.各位觀眾須彼此獨(dú)立地在選票上選3名歌手,其中觀眾甲是1號(hào)歌手的歌迷,他必選1號(hào),不選2號(hào),另在3至5號(hào)中隨機(jī)選2名.觀眾乙和丙對(duì)5位歌手的演唱沒有偏愛,因此在1至5號(hào)中隨機(jī)選3名歌手.
(1)求觀眾甲選中3號(hào)歌手且觀眾乙未選中3號(hào)歌手的概率;
(2)X表示3號(hào)歌手得到觀眾甲、乙、丙的票數(shù)之和,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兩條平行直線和圓的位置關(guān)系定義為:若兩條平行直線和圓有四個(gè)不同的公共點(diǎn),則稱兩條平行線和圓“相交”;若兩條平行直線和圓沒有公共點(diǎn),則稱兩條平行線和圓“相離”;若兩平行直線和圓有一個(gè)、兩個(gè)或三個(gè)不同的公共點(diǎn),則稱兩條平行線和圓“相切”.已知直線,和圓相切,則的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案