【題目】已知函數(shù)f(x)=alnx+x2﹣x,其中a∈R.
(Ⅰ)若a>0,討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)x≥1時(shí),f(x)≥0恒成立,求a的取值范圍.
【答案】解:(Ⅰ)f′(x)= +2x﹣1= ,(x>0),
令g(x)=2x2﹣x+a=2 +a﹣ ,(x>0),
a≥ 時(shí),g(x)≥0,即f′(x)≥0,
f(x)在(0,+∞)遞增,
0<a< 時(shí),令g′(x)>0,解得:x> 或0<x< ,
令g′(x)<0,解得: <x< ,
故f(x)在(0, )遞增,在( , )遞減,
在( ,+∞)遞增;
(Ⅱ)x=1時(shí),顯然成立,
x>1時(shí),問題轉(zhuǎn)化為a≥ 在(1,+∞)恒成立,
令h(x)= ,則h′(x)= ,
令m(x)=(﹣2x+1)lnx+x﹣1,(x>1),
則m′(x)=﹣2lnx+ <0,
故m(x)<m(1)=0,
故h′(x)在(1,+∞)遞減,
而 = =﹣1,
故a≥﹣1
【解析】(Ⅰ)求出f(x)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;(Ⅱ)求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為a≥ 在(1,+∞)恒成立,令h(x)= ,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù),需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的實(shí)義域?yàn)镽,其圖象關(guān)于點(diǎn)(﹣1,0)中心對稱,其導(dǎo)函數(shù)為f′(x),當(dāng)x<﹣1時(shí),(x+1)[f(x)+(x+1)f′(x)]<0.則不等式xf(x﹣1)>f(0)的解集為( )
A.(1,+∞)
B.(﹣∞,﹣1)
C.(﹣1,1)
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|2x﹣a|+a.
(1)當(dāng)a=2時(shí),求不等式f(x)≤6的解集;
(2)設(shè)函數(shù)g(x)=|2x﹣1|,當(dāng)x∈R時(shí),f(x)+g(x)≥3,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=BC=BB1 , AB1∩A1B=E,D為AC上的點(diǎn),B1C∥平面A1BD.
(1)求證:BD⊥平面A1ACC1;
(2)若AB=1,且ACAD=1,求二面角B﹣A1D﹣B1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C所對的邊分別是a、b、c,已知A=60°,b=5,c=4.
(1)求a;
(2)求sinBsinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列 的前 項(xiàng)和為 ,且滿足
(1)求數(shù)列 的通項(xiàng)公式 ;
(2)設(shè) ,令 ,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三個(gè)函數(shù)f(x)=2x+x,g(x)=x﹣1,h(x)=log3x+x的零點(diǎn)依次為a,b,c,則( )
A.a<b<c
B.b<a<c
C.c<a<b
D.a<c<b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知cosα,sinα是函數(shù)f(x)=x2﹣tx+t(t∈R)的兩個(gè)零點(diǎn),則sin2α=( )
A.2﹣2
B.2 ﹣2
C. ﹣1
D.1﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的公差d≠0,且a1 , a3 , a13成等比數(shù)列,若a1=1,Sn是數(shù)列{an}前n項(xiàng)的和,則 (n∈N+)的最小值為( )
A.4
B.3
C.2 ﹣2
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com