【題目】已知α是三角形的內(nèi)角,且sinα+cosα=
(1)求cos2α的值;
(2)把 用tanα表示出來(lái),并求其值.

【答案】
(1)解:聯(lián)立得 ,

由①得cosα= ﹣sinα,將其代入②,

整理得25sin2α﹣5sinα﹣12=0.

∵α是三角形內(nèi)角,

∴可得:sinα= ,cosα=﹣

cos2α=2cos2α﹣1=2× ﹣1=﹣


(2)解: = = ,

∵tanα=﹣ ,

= =﹣


【解析】(1)聯(lián)立得 ,整理得25sin2α﹣5sinα﹣12=0,即可解得sinα,cosα的值,進(jìn)而利用二倍角的余弦函數(shù)公式即可計(jì)算得解.(2)利用同角三角函數(shù)基本關(guān)系式可求 = ,由(1)可求tanα=﹣ ,即可計(jì)算得解.
【考點(diǎn)精析】掌握同角三角函數(shù)基本關(guān)系的運(yùn)用是解答本題的根本,需要知道同角三角函數(shù)的基本關(guān)系:;;(3) 倒數(shù)關(guān)系:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題是真命題的是(
A.a>b是ac2>bc2的充要條件
B.a>1,b>1是ab>1的充分條件
C.?x0∈R,e ≤0
D.若p∨q為真命題,則p∧q為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,點(diǎn)E,F(xiàn)分別為AB和PD中點(diǎn). (Ⅰ)求證:直線AF∥平面PEC;
(Ⅱ)求PC與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直三棱柱ABC-A1B1C1中,AB=AC,E是BC的中點(diǎn).

1求證:平面AB1E平面B1BCC1;

2求證:平面AB1E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是菱形, 平面, 是棱上的一個(gè)動(dòng)點(diǎn).

(Ⅰ)若的中點(diǎn),求證: 平面;

)求證:平面平面;

(Ⅲ)若三棱錐的體積是四棱錐體積的,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,sin = ,AB=2,點(diǎn)D在線段AC上,且AD=2DC,BD= .(Ⅰ)求:BC的長(zhǎng);(Ⅱ)求△DBC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x方程 ﹣x=lnx有唯一的解,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)有甲、乙兩個(gè)研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為 .現(xiàn)安排甲組研發(fā)新產(chǎn)品A,乙組研發(fā)新產(chǎn)品B,設(shè)甲、乙兩組的研發(fā)相互獨(dú)立. (Ⅰ)求至少有一種新產(chǎn)品研發(fā)成功的概率;
(Ⅱ)若新產(chǎn)品A研發(fā)成功,預(yù)計(jì)企業(yè)可獲利潤(rùn)120萬(wàn)元;若新產(chǎn)品B研發(fā)成功,預(yù)計(jì)企業(yè)可獲利潤(rùn)100萬(wàn)元,求該企業(yè)可獲利潤(rùn)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中常數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;

(2)當(dāng)時(shí),若函數(shù)有三個(gè)不同的零點(diǎn),求的取值范圍;

(3)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為,當(dāng)時(shí),若內(nèi)恒成立,則稱為函數(shù)的“類對(duì)稱點(diǎn)”,請(qǐng)你探究當(dāng)時(shí),函數(shù)是否存在“類對(duì)稱點(diǎn)”,若存在,請(qǐng)最少求出一個(gè)“類對(duì)稱點(diǎn)” 的橫坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案