設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S6:S3=3,則S9:S6=
 
分析:根據(jù)等比數(shù)列的性質(zhì)得到Sn,S2n-Sn,S3n-S2n成等比列出關(guān)系式,又S6:S3=3,表示出S3,代入到列出的關(guān)系式中即可求出S9:S6的值.
解答:解:因?yàn)榈缺葦?shù)列{an}的前n項(xiàng)和為Sn,則Sn,S2n-Sn,S3n-S2n成等比,(Sn≠0)
所以
S6-S3
S3
=
S9-S6
S6-S3
,又
S6
S3
=3,即S3=
1
3
S6,
所以
S6-
1
3
S6
1
3
S6
=
S9-S6
S6-
1
3
S6
,
整理得
S9
S6
=
7
3

故答案為:
7
3
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用等比數(shù)列的性質(zhì)化簡(jiǎn)求值,是一道基礎(chǔ)題.解本題的關(guān)鍵是根據(jù)等比數(shù)列的性質(zhì)得到Sn,S2n-Sn,S3n-S2n成等比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若8a2+a5=0,則下列式子中數(shù)值不能確定的是( 。
A、
a5
a3
B、
S5
S3
C、
an+1
an
D、
Sn+1
Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,巳知S10=∫03(1+2x)dx,S20=18,則S30=
21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若
S6
S3
=3,則
S9
S6
=( 。
A、
1
2
B、
7
3
C、
8
3
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的前n 項(xiàng)和為Sn,若
S6
S3
=3,則
S9
S3
=
7
7

查看答案和解析>>

同步練習(xí)冊(cè)答案