【題目】已知函數f(x)=x2++alnx.
(Ⅰ)若f(x)在區(qū)間[2,3]上單調遞增,求實數a的取值范圍;
(Ⅱ)設f(x)的導數f’(x )的圖象為曲線C ,曲線C 上的不同兩點A (x1, y1) ,B (x2,y 2) 所在直線的斜率為k ,求證:當a≤4時,|k|>1.
【答案】(Ⅰ)a≥-7;(Ⅱ)證明見解析.
【解析】試題分析:
(1)將單調性的問題轉化為恒成立的問題求解可得實數a的取值范圍是a≥-7;
(2)原問題等價于于||>|x1-x2|,據此結合題意和絕對值不等式的性質即可證得題中的結論.
試題解析:
(Ⅰ)由f(x)=x2++aln x,得f'(x)=2x-+,
由已知得2x-+≥0在x∈[2,3]上恒成立,即a≥-2x2 恒成立.
設g (x)=-2x ,則g'(x )=--4x <0,所以g(x)在x∈[2,3]上單調遞減,
g(x)max =g(2)=-7,所以a≥-7.
(Ⅱ)證明:|k|>1等價于||>1,等價于||>|x1-x2|,
而||=|
=|x1-x2|·|2+-|
所以只需要證明|2+-|>1.
即a<x1+x2+或a>3x1+x2+,
而a>3x1+x2+,顯然不可能對一切正實數x1x2 均成立,
所以只需要證a<x1+x2+成立.
因為x1+x2+>x1x2+,設t=,M(t)=t2+(t>0)
得M’(t)=2t-當t=時M’(t)=0
在t∈(0,)上,M(t)遞減;在t∈(,+∞)上,M(t)遞增
所以M(t)≥3=>4≥a,所以a<x1x2+
所以||>1,即當a≤4時,|K|>1.
科目:高中數學 來源: 題型:
【題目】給出三種函數模型:f(x)=xn(n>0),g(x)=ax(a>1)和h(x)=logax(a>1).根據它們增長的快慢,則一定存在正實數x0 , 當x>x0時,就有( )
A.f(x)>g(x)>h(x)
B.h(x)>g(x)>f(x)
C.f(x)>h(x)>g(x)
D.g(x)>f(x)>h(x)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若(2x+ )100=a0+a1x+a2x2+…+a100x100 , 則(a0+a2+a4+…+a100)2﹣(a1+a3+a5+…+a99)2的值為( )
A.1
B.﹣1
C.0
D.2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校舉行“慶元旦”教工羽毛球單循環(huán)比賽(任意兩個參賽隊伍只比賽一場),有高一、高二、高三共三個隊參賽,高一勝高二的概率為,高一勝高三的概率為,高二勝高三的概率為,每場勝負相互獨立,勝者記1分,負者記0分,規(guī)定:積分相同時,高年級獲勝.
(1)若高三獲得冠軍的概率為,求;
(2)記高三的得分為,求的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣2ax+a在區(qū)間(1,3)內有極小值,則函數g(x)= 在區(qū)間(1,+∝)上一定( )
A.有最小值
B.有最大值
C.是減函數
D.是增函數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的定義域為(﹣2,2),函數g(x)=f(x﹣1)+f(3﹣2x).
(1)求函數g(x)的定義域;
(2)若f(x)是奇函數且在定義域內單調遞減,求不等式g(x)≤0的解集
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=1﹣,求解:(1)f(x)的值域;(2)證明f(x)為R上的增函數. .
(1)求f(x)的值域;
(2)證明f(x)為R上的增函數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com