【題目】端午節(jié)是我國(guó)民間為紀(jì)念愛(ài)國(guó)詩(shī)人屈原的一個(gè)傳統(tǒng)節(jié)日.某市為了解端午節(jié)期間粽子的銷售情況,隨機(jī)問(wèn)卷調(diào)查了該市1000名消費(fèi)者在去年端午節(jié)期間的粽子購(gòu)買量(單位:克),所得數(shù)據(jù)如下表所示:

購(gòu)買量

人數(shù)

100

300

400

150

50

將煩率視為概率

1)試求消費(fèi)者粽子購(gòu)買量不低于300克的概率;

2)若該市有100萬(wàn)名消費(fèi)者,請(qǐng)估計(jì)該市今年在端午節(jié)期間應(yīng)準(zhǔn)備多少千克棕子才能滿足市場(chǎng)需求(以各區(qū)間中點(diǎn)值作為該區(qū)間的購(gòu)買量).

【答案】12225000千克

【解析】

1)由表得粽子購(gòu)買量不低于300克的共有200人,可得其概率;

2)先計(jì)算出每位顧客粽子購(gòu)買量的平均數(shù),再乘100萬(wàn)即可.

1)在隨機(jī)調(diào)查的該超市1000名消費(fèi)者中,

粽子購(gòu)買量不低于300克的共有200人,

所以消費(fèi)者粽子購(gòu)買量不低于300克的概率

2)由題意可得,購(gòu)買的概率為0.1,購(gòu)買的概率為0.3,購(gòu)買的概率為0.4,購(gòu)買[300,400)的概率為0.15,購(gòu)買的概率為0.05

所以粽子購(gòu)買量的平均數(shù)為

所以需準(zhǔn)備粽子的重量為0.225×106=225000千克

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,,,,,

(1)求證:平面平面

(2)在線段上是否存在點(diǎn),使得平面與平面所成銳二面角為?若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線經(jīng)過(guò)點(diǎn)且傾斜角為,,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程;

2)過(guò)原點(diǎn)作直線的垂線,垂足為,交曲線于另一點(diǎn),當(dāng)變化時(shí),求的面積的最大值及相應(yīng)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD為正方形,PA⊥平面ABCD,PA=AB,E為線段PB的中點(diǎn),F為線段BC上的動(dòng)點(diǎn).

1)求證:AE⊥平面PBC;

2)試確定點(diǎn)F的位置,使平面AEF與平面PCD所成的銳二面角為30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,D的中點(diǎn).

1)證明:平面;

2)若是邊長(zhǎng)為2的正三角形,且,,平面平面.求平面與側(cè)面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解高新產(chǎn)業(yè)園引進(jìn)的甲公司前期的經(jīng)營(yíng)狀況,市場(chǎng)研究人員對(duì)該公司2019年下半年連續(xù)六個(gè)月的利潤(rùn)進(jìn)行了統(tǒng)計(jì),統(tǒng)計(jì)數(shù)據(jù)列表如下:

月份

7

8

9

10

11

12

月份代碼

1

2

3

4

5

6

月利潤(rùn)(萬(wàn)元)

110

130

160

150

200

210

1)請(qǐng)用相關(guān)系數(shù)說(shuō)明月利潤(rùn)y(單位:萬(wàn)元)與月份代碼x之間的關(guān)系的強(qiáng)弱(結(jié)果保留兩位小數(shù)),求y關(guān)于x的線性回歸方程,并預(yù)測(cè)該公司20201月份的利潤(rùn);

2)甲公司新研制了一款產(chǎn)品,需要采購(gòu)一批新型材料,己知生產(chǎn)新型材料的乙企業(yè)對(duì)A、B兩種型號(hào)各100件新型材料進(jìn)行模擬測(cè)試,統(tǒng)計(jì)兩種新型材料使用壽命頻數(shù)如下表所示:

使用壽命

材料類型

1個(gè)月

2個(gè)月

3個(gè)月

4個(gè)月

總計(jì)

A

15

40

35

10

100

B

10

30

40

20

100

現(xiàn)有采購(gòu)成本分別為10萬(wàn)元/件和12萬(wàn)元/件的A、B兩種型號(hào)的新型材料可供選擇,按規(guī)定每種新型材料最多可使用4個(gè)月,不同類型的新型材料損壞的時(shí)間各不相同,經(jīng)甲公司測(cè)算,平均每件新型材料每月可以帶來(lái)5萬(wàn)元收入,不考慮除采購(gòu)成本之外的其他成本,假設(shè)每件新型材料的使用壽命都是整數(shù)月,且以頻率估計(jì)每件新型材料使用壽命的概率,如果你是甲公司的負(fù)責(zé)人,以每件新型材料產(chǎn)生利潤(rùn)的期望值為決策依據(jù),你會(huì)選擇采購(gòu)哪款新型材料?

參考公式:相關(guān)系數(shù);

回歸直線方程為,其中,.

參考數(shù)據(jù):,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中中,是邊長(zhǎng)為的等邊三角形,底面為直角梯形,,,

1)證明:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),有下列四個(gè)結(jié)論:

為偶函數(shù);②的值域?yàn)?/span>

上單調(diào)遞減;④上恰有8個(gè)零點(diǎn),

其中所有正確結(jié)論的序號(hào)為(

A.①③B.②④C.①②③D.①③④

查看答案和解析>>

同步練習(xí)冊(cè)答案