已知某隨機變量的概率分布列如右表,其中,隨機變量的方差,則  ▲  .
依題意可得,所以。因為,所以,解得,從而,所以
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題


現(xiàn)有長分別為、的鋼管各根(每根鋼管質地均勻、粗細相同且附有不同的編號),從中隨機抽取根(假設各鋼管被抽取的可能性是均等的,),再將抽取的鋼管相接焊成筆直的一根.
(1)當時,記事件{抽取的根鋼管中恰有根長度相等},求
(2)當時,若用表示新焊成的鋼管的長度(焊接誤差不計),①求的分布列;
②令,,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若變量X服從二點分布,即P(X=1)=p,P(X=0)=q其中0<p<1則D(X)=    (用p表示)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙兩同學進行下棋比賽,約定每局勝者得1分,負者得0分(無平局),比賽進行到有一個人比對方多2分或比滿8局時停止,設甲在每局中獲勝的概率為,且各局勝負相互獨立.已知第二局比賽結束時比賽停止的概率為
(I)如右圖為統(tǒng)計這次比賽的局數(shù)n和甲、乙的總得分S,T的程序框圖.其中如果甲獲勝,輸人a=l.b=0;如果乙獲勝,則輸人a=0,b=1.請問在①②兩個判斷框中應分別填寫什么條件?
(Ⅱ)求p的值;
(Ⅲ)設表示比賽停止時已比賽的局數(shù),求隨機變量的分布列和

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)在淮北市高三“一!笨荚囍,某校甲、乙、丙、丁四名同學,在學校年級名次依次為l,2,3,4名,如果在“二!笨荚囍械那4名依然是這四名同學.
(1)求“二模”考試中恰好有兩名同學排名不變的概率;
(2)設“二!笨荚囍信琶蛔兊耐瑢W人數(shù)為X,求X分布列和數(shù)學期望,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設隨機變量X~B(2,p),Y~B(3,p),若P(X)=,則P(Y)=____________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
在高三年級某班組織的歡慶元旦活動中,有一項游戲規(guī)則如下:參與者最多有5次抽題并答題的機會.如果累計答對2道題,立即結束游戲,并獲得紀念品;如果5次機會用完仍未累計答對2道題,也結束游戲,并不能獲得紀念品.已知某參與者答對每道題答對的概率都是,且每道題答對與否互不影響.
(1)求該參與者獲得紀念品的概率;
(2)記該參與者游戲時答題的個數(shù)為,求的分布列及期望

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知隨機變量,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設火箭發(fā)射失敗的概率為0.01,若發(fā)射10次,其中失敗的次數(shù)為X,則下列結論正確的是                                                                                                  ( 。
A.EX)=0.01B.PXk)=0.01k×0.9910-k
C.DX)=0.1D.PXk)=0.01k×0.9910-k

查看答案和解析>>

同步練習冊答案