【題目】已知點,直線:,平面上有一動點,記點到的距離為.若動點滿足:.
(1)求點的軌跡方程;
(2)過的動直線與點的軌跡交于,兩點,試問:在軸上,是否存在定點,使得為常數(shù)?若存在,求出點的坐標;若不存在,說明理由.
【答案】(1);(2)存在定點,使得為常數(shù),點
【解析】
(1)設點,可得到的表達式,結合,可求得的關系式,即為所求軌跡方程;
(2)若直線的斜率存在,設過點的直線:,與軌跡方程聯(lián)立,可得到關于的一元二次方程及根與系數(shù)關系,設,,,可得到的表達式,將根與系數(shù)關系代入上式,整理并化簡可求得定點及定值,若直線的斜率不存在,驗證可知也滿足題意.
(1)設點,則,,展開得,
所以的軌跡方程為;
(2)假設在軸上存在定點,使得為常數(shù),設,,,
則,,
若直線的斜率存在,不妨設過點的直線:,,
,,
則 ,
不妨設,則
化簡可得,
令,解得,,
即為常數(shù),點,;
若直線的斜率不存在,設在的上方,可得,,經(jīng)驗證滿足.
故在軸上,存在定點,使得為常數(shù),點,.
科目:高中數(shù)學 來源: 題型:
【題目】定圓,動圓過點且與圓相切,記圓心的軌跡為.
(1)求軌跡的方程;
(2)設點在上運動,與關于原點對稱,且,當的面積最小時, 求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的定義域,并判斷的奇偶性;
(2)如果當時,的值域是,求與的值;
(3)對任意的,,是否存在,使得,若存在,求出;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列判斷正確的是( )
A.若隨機變量服從正態(tài)分布,,則;
B.已知直線平面,直線平面,則“”是“”的充分不必要條件;
C.若隨機變量服從二項分布:,則;
D.是的充分不必要條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,國資委.黨委高度重視扶貧開發(fā)工作,堅決貫徹落實中央扶貧工作重大決策部署,在各個貧困縣全力推進定點扶貧各項工作,取得了積極成效,某貧困縣為了響應國家精準扶貧的號召,特地承包了一塊土地,已知土地的使用面積以及相應的管理時間的關系如下表所示:
土地使用面積(單位:畝) | 1 | 2 | 3 | 4 | 5 |
管理時間(單位:月) | 8 | 10 | 13 | 25 | 24 |
并調查了某村300名村民參與管理的意愿,得到的部分數(shù)據(jù)如下表所示:
愿意參與管理 | 不愿意參與管理 | |
男性村民 | 150 | 50 |
女性村民 | 50 |
(1)求出相關系數(shù)的大小,并判斷管理時間與土地使用面積是否線性相關?
(2)是否有99.9%的把握認為村民的性別與參與管理的意愿具有相關性?
(3)若以該村的村民的性別與參與管理意愿的情況估計貧困縣的情況,則從該貧困縣中任取3人,記取到不愿意參與管理的男性村民的人數(shù)為,求的分布列及數(shù)學期望。
參考公式:
其中。臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義在區(qū)間上的函數(shù),若同時滿足:
(Ⅰ)若存在閉區(qū)間,使得任取,都有(是常數(shù));
(Ⅱ)對于內任意,當,時總有恒成立,則稱函數(shù)為“平底型”函數(shù).
(1)判斷函數(shù)和是否是“平底型”函數(shù)?簡要說明理由;
(2)設是(1)中的“平底型”函數(shù),若不等式對一切恒成立,求實數(shù)的取值范圍;
(3)函數(shù)是區(qū)間上的“平底型”函數(shù),求和滿足的條件,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】松江有軌電車項目正在如火如荼的進行中,通車后將給市民出行帶來便利. 已知某條線路通車后,電車的發(fā)車時間間隔(單位:分鐘)滿足. 經(jīng)市場調研測算,電車載客量與發(fā)車時間間隔相關,當時電車為滿載狀態(tài),載客量為人,當時,載客量會減少,減少的人數(shù)與的平方成正比,且發(fā)車時間間隔為分鐘時的載客量為人.記電車載客量為.
(1)求的表達式,并求當發(fā)車時間間隔為分鐘時,電車的載客量;
(2)若該線路每分鐘的凈收益為(元),問當發(fā)車時間間隔為多少時,該線路每分鐘的凈收益最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面直角坐標系中兩個定點,,如果對于常數(shù),在函數(shù),的圖像上有且只有6個不同的點,使得成立,那么的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】第二屆中國國際進口博覽會于2019年11月5日至10日在上海國家會展中心舉行.它是中國政府堅定支持貿易自由化和經(jīng)濟全球化,主動向世界開放市場的重要舉措,有利于促進世界各國加強經(jīng)貿交流合作,促進全球貿易和世界經(jīng)濟增長,推動開放世界經(jīng)濟發(fā)展.某機構為了解人們對“進博會”的關注度是否與性別有關,隨機抽取了100名不同性別的人員(男、女各50名)進行問卷調查,并得到如下列聯(lián)表:
男性 | 女性 | 合計 | |
關注度極高 | 35 | 14 | 49 |
關注度一般 | 15 | 36 | 51 |
合計 | 50 | 50 | 100 |
(1)根據(jù)列聯(lián)表,能否有99.9%的把握認為對“進博會”的關注度與性別有關;
(2)若從關注度極高的被調查者中按男女分層抽樣的方法抽取7人了解他們從事的職業(yè)情況,再從7人中任意選取2人談談關注“進博會”的原因,求這2人中至少有一名女性的概率.
附:.
參考數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com