【題目】海關(guān)對同時從A、B、C三個不同地區(qū)進(jìn)口的某種商品進(jìn)行抽樣檢測,從各地區(qū)進(jìn)口此種商品的數(shù)量(單位:件)如下表所示,工作人員用分層抽樣的方法從這些商品中共抽取6件樣品進(jìn)行檢測.
地區(qū) | A | B | C |
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來自A、B、C各地區(qū)商品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件送往甲機(jī)構(gòu)進(jìn)一步檢測,求這2件商品來自相同地區(qū)的概率.
【答案】(1)各地區(qū)抽取的商品數(shù)分別別為A: 1;B: 3;C: 2;(2)
【解析】試題分析:(1)先計算出抽樣比,進(jìn)而可求出這6件樣品來自A,B,C各地區(qū)商品的數(shù)量;(2)先計算在這6件樣品中隨機(jī)抽取2件的基本事件總數(shù),及這2件商品來自相同地區(qū)的事件個數(shù),代入古典概型概率計算公式,可得答案.
試題解析:(1)因?yàn)闃颖救萘颗c總體中的個體數(shù)的比是,
所以樣本中包含三個地區(qū)的個體數(shù)量分別是,,,
所以三個地區(qū)的商品被選取的件數(shù)分別為1,3,2
(2)設(shè)6件來自三個地區(qū)的樣品分別為:,
則抽取的這2件商品構(gòu)成的所有基本事件為:,,,,共15種個,
每個樣本被抽到的機(jī)會均等,因此這些基本事件的出現(xiàn)是等可能的.
記事件:“抽取的這2件商品來自相同地區(qū)”,
則事件包含的基本事件有,,,共4個,
所以,即這2件商品來自相同地區(qū)的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記所有非零向量構(gòu)成的集合為V,對于 , ∈V, ≠ ,定義V( , )=|x∈V|x =x |
(1)請你任意寫出兩個平面向量 , ,并寫出集合V( , )中的三個元素;
(2)請根據(jù)你在(1)中寫出的三個元素,猜想集合V( , )中元素的關(guān)系,并試著給出證明;
(3)若V( , )=V( , ),其中 ≠ ,求證:一定存在實(shí)數(shù)λ1 , λ2 , 且λ1+λ2=1,使得 =λ1 +λ2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+blnx在x=1處有極值 .
(1)求a,b的值;
(2)求函數(shù)y=f(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次數(shù)學(xué)測驗(yàn)中,有6位同學(xué)的平均成績?yōu)?17分,用表示編號為的同學(xué)所得成 績,6位同學(xué)成績?nèi)绫恚?/span>
(1)求及這6位同學(xué)成績的方差;
(2)從這6位同學(xué)中隨機(jī)選出2位同學(xué),則恰有1位同學(xué)成績在區(qū)間中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各函數(shù)在其定義域中,既是奇函數(shù),又是增函數(shù)的是( )
A.y=x+1
B.y=﹣x3
C.y=﹣
D.y=x|x|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (其中為自然對數(shù)的底數(shù)).
(1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)若函數(shù)在區(qū)間上單調(diào)遞減,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)判斷并用定義證明函數(shù)的奇偶性;
(2)判斷并用定義證明函數(shù)在(﹣∞,0)上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠家舉行大型的促銷活動,經(jīng)測算某產(chǎn)品當(dāng)促銷費(fèi)用為萬元時,銷售量萬件滿足(其中, 為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品萬件還需投入成本萬元(不含促銷費(fèi)用),產(chǎn)品的銷售價格定為萬元/萬件.
(1)將該產(chǎn)品的利潤萬元表示為促銷費(fèi)用萬元的函數(shù);
(2)促銷費(fèi)用投入多少萬元時,廠家的利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù) ,看下面四個結(jié)論( ) ①f(x)是奇函數(shù);②當(dāng)x>2007時, 恒成立;③f(x)的最大值是 ;④f(x)的最小值是 .其中正確結(jié)論的個數(shù)為:
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com