【題目】設(shè)向量 =(sinx, cosx), =(﹣1,1), =(1,1),其中x∈(0,π].
(1)若( + )∥ ,求實(shí)數(shù)x的值;
(2)若 = ,求函數(shù)sinx的值.
【答案】
(1)解:向量 =(sinx, cosx), =(﹣1,1),
∴ + =(sinx﹣1, cosx+1);
又 =(1,1),且( + )∥ ,
∴(sinx﹣1)﹣( cosx+1)=0,
化簡(jiǎn)得sinx﹣ cosx=2,
即2( sinx﹣ cosx)=2sin(x﹣ )=2,
∴sin(x﹣ )=1;
又x∈[0,π],
∴x﹣ ∈[﹣ , ],
∴x﹣ = ,
∴x= ;
(2)解: =﹣sinx+ cosx
=2( cosx﹣ sinx)
=2cos(x+ )
= ,
∴cos(x+ )= ;
又x∈[0,π],
則x+ ∈[ , ],
∴x+ ∈[ , ],
∴sin(x+ )= = ;
∴sinx=sin(x+ ﹣ )=sin(x+ ﹣ )
=sin(x+ )cos ﹣cos(x+ )sin
= × ﹣ ×
= .
【解析】(1)根據(jù)平面向量的坐標(biāo)運(yùn)算與共線定理,列出方程求出sinx的值,再根據(jù)x的取值范圍求出x的值;(2)根據(jù)平面向量數(shù)量積的定義和三角恒等變換,利用特殊角的三角函數(shù)值,即可求出sinx的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的首項(xiàng)a1=3,且公差d≠0,其前n項(xiàng)和為Sn , 且a1 , a4 , a13分別是等比數(shù)列{bn}的b2 , b3 , b4 . (Ⅰ)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(Ⅱ)證明 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商區(qū)停車場(chǎng)臨時(shí)停車按時(shí)段收費(fèi),收費(fèi)標(biāo)準(zhǔn)為:每輛汽車一次停車不超過1小時(shí)收費(fèi)6元,超過1小時(shí)的部分每小時(shí)收費(fèi)8元(不足1小時(shí)的部分按1小時(shí)計(jì)算).現(xiàn)有甲、乙二人在該商區(qū)臨時(shí)停車,兩人停車都不超過4小時(shí). (Ⅰ)若甲停車1小時(shí)以上且不超過2小時(shí)的概率為 ,停車付費(fèi)多于14元的概率為 ,求甲停車付費(fèi)恰為6元的概率;
(Ⅱ)若每人停車的時(shí)長(zhǎng)在每個(gè)時(shí)段的可能性相同,求甲、乙二人停車付費(fèi)之和為36元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)>f(x),且f(x+2)為奇函數(shù),f(4)=﹣1,則不等式f(x)<ex的解集為( )
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(﹣∞,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)= x3﹣ ax2+(a﹣1)x+1在區(qū)間(2,3)內(nèi)為減函數(shù),在區(qū)間(5,+∞)為增函數(shù),則實(shí)數(shù)a的取值范圍是( )
A.[3,4]
B.[5,7]
C.[4,6]
D.[7,8]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sinxcosx﹣cos2x+ ,(x∈R).
(1)若對(duì)任意x∈[﹣ , ],都有f(x)≥a,求a的取值范圍;
(2)若先將y=f(x)的圖象上每個(gè)點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,然后再向左平移 個(gè)單位得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)﹣ 在區(qū)間[﹣2π,4π]內(nèi)的所有零點(diǎn)之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從2 012名學(xué)生中選取50名學(xué)生參加數(shù)學(xué)競(jìng)賽,若采用下面的方法選。合扔煤(jiǎn)單隨機(jī)抽樣從2 012人中剔除12人,剩下的2 000人再按系統(tǒng)抽樣的方法抽取50人,則在2 012人中,每人入選的概率( )
A.不全相等
B.均不相等
C.都相等,且為
D.都相等,且為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=1+ +sinx在區(qū)間[﹣k,k](k>0)上的值域?yàn)閇m,n],則m+n=( )
A.0
B.1
C.2
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)α是空間中的一個(gè)平面,l,m,n是三條不同的直線,則下列命題中正確的是( )
A.若mα,nα,l⊥m,l⊥n,則l⊥α
B.若mα,n⊥α,l⊥n,則l∥m
C.若l∥m,m⊥α,n⊥α,則l∥n
D.若l⊥m,l⊥n,則n∥m
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com