【題目】下列結(jié)論中正確的序號是
①函數(shù)y=ax(a>0且a≠1)與函數(shù) (a>0且a≠1)的定義域相同;
②函數(shù)y=k3x(k>0)(k為常數(shù))的圖象可由函數(shù)y=3x的圖象經(jīng)過平移得到;
③函數(shù) (x≠0)是奇函數(shù)且函數(shù) (x≠0)是偶函數(shù);
④若x1是函數(shù)f(x)的零點,且m<x1<n,則f(m)f(n)<0.

【答案】①②③
【解析】解:對于①,函數(shù)y=ax(a>0且a≠1)與函數(shù) (a>0且a≠1)的定義域都是R,故正確;
對于②,②因為k>0,所以存在t∈R,使得k=3t , y=k3x=3x+t(k>0),故正確;
對于③,函數(shù) (x≠0)滿足f(x)+f(﹣x)=0,是奇函數(shù),函數(shù) (x≠0)是奇函數(shù)乘以奇函數(shù),是偶函數(shù),故正確;
對于④,若x1是函數(shù)f(x)的零點,x1兩側(cè)的函數(shù)值可以同號,則f(m)f(n)>0,故錯.
所以答案是:①②③.
【考點精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A={x|﹣1<x≤3},B={x|m≤x<1+3m}
(1)當(dāng)m=1時,求A∪B;
(2)若BRA,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中常數(shù).

)討論上的單調(diào)性;

)當(dāng)時,若曲線上總存在相異兩點,使曲線兩點處的切線互相平行,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國上是世界嚴(yán)重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn)(噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照 ,…, 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中 的值;

(Ⅱ)已知該市有80萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

(Ⅲ)若該市政府希望使的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計的值,并說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x)對任意x∈R都有f(x)=f(x+4),當(dāng)x∈(﹣2,0)時,f(x)=2x , 則f(2016)﹣f(2015)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義域為的函數(shù),如果存在區(qū)間),同時滿足:

內(nèi)是單調(diào)函數(shù);②當(dāng)定義域是時, 的值域也是

則稱函數(shù)是區(qū)間上的“保值函數(shù)”.

(1)求證:函數(shù)不是定義域上的“保值函數(shù)”;

(2)已知)是區(qū)間上的“保值函數(shù)”,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)證明f(x)為偶函數(shù);
(2)若不等式k≤xf(x)+ 在x∈[1,3]上恒成立,求實數(shù)k的取值范圍;
(3)當(dāng)x∈[ ](m>0,n>0)時,函數(shù)g(x)=tf(x)+1,(t≥0)的值域為[2﹣3m,2﹣3n],求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:全集U=R,函數(shù) 的定義域為集合A,集合B={x|x2﹣a<0}
(1)求UA;
(2)若A∪B=A,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣ (x∈R),區(qū)間M=[a,b](a<b),集合N={y|y=f (x),x∈M}.若M=N,則b﹣a的值是

查看答案和解析>>

同步練習(xí)冊答案