由于生產(chǎn)條件的影響,生產(chǎn)某種產(chǎn)品正品的概率為,次品的概率分別為.已知生產(chǎn)1件正品獲得的利潤為6萬元,而生產(chǎn)1件次品則虧損2萬元.
(1)求生產(chǎn)3件產(chǎn)品恰有2件正品的概率;
(2)設(shè)2件產(chǎn)品的利潤和(單位:萬元)為ξ,求ξ的分布列和數(shù)學(xué)期望.
【答案】分析:(1)設(shè)X為生產(chǎn)3件產(chǎn)品中正品的個(gè)數(shù),則X服從二項(xiàng)分布(3,),由此可求生產(chǎn)3件產(chǎn)品恰有2件正品的概率;
(2)確定ξ的取值,求出相應(yīng)的概率,即可求ξ的分布列和數(shù)學(xué)期望.
解答:解:(1)設(shè)X為生產(chǎn)3件產(chǎn)品中正品的個(gè)數(shù),則X服從二項(xiàng)分布(3,),
所以P(X=2)==;…(6分)
(2)ξ的取值有12、4、-4,則P(X=12)=,P(X=4)=,P(X=-4)=,
ξ的分布列為
 ξ 12 4-4
 P   
E(ξ)=12×+4×-4×=10(萬元).…(14分)
點(diǎn)評:本題考查概率知識,考查離散型隨機(jī)變量的分布列與期望,正確求概率是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由于生產(chǎn)條件的影響,生產(chǎn)某種產(chǎn)品正品的概率為
7
8
,次品的概率分別為
1
8
.已知生產(chǎn)1件正品獲得的利潤為6萬元,而生產(chǎn)1件次品則虧損2萬元.
(1)求生產(chǎn)3件產(chǎn)品恰有2件正品的概率;
(2)設(shè)2件產(chǎn)品的利潤和(單位:萬元)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

由于生產(chǎn)條件的影響,生產(chǎn)某種產(chǎn)品正品的概率為
7
8
,次品的概率分別為
1
8
.已知生產(chǎn)1件正品獲得的利潤為6萬元,而生產(chǎn)1件次品則虧損2萬元.
(1)求生產(chǎn)3件產(chǎn)品恰有2件正品的概率;
(2)設(shè)2件產(chǎn)品的利潤和(單位:萬元)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案