【題目】在平面直角坐標(biāo)系中,已知曲線 ,以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線 .

(1)將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的、2倍后得到曲線,求的參數(shù)方程;

(2)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.

【答案】(1,;(2.

【解析】試題分析:(1)根據(jù)將直線極坐標(biāo)方程化為直角坐標(biāo)方程,根據(jù)圖像伸縮變換得曲線的直角坐標(biāo)方程,再根據(jù)橢圓參數(shù)方程得曲線的參數(shù)方程為參數(shù))(2)根據(jù)點(diǎn)到直線距離公式得點(diǎn)到直線的距離為

利用配角公式得,再根據(jù)正弦函數(shù)性質(zhì)得最值及對應(yīng)自變量的取值

試題解析:(1)由題意知,直線的直角坐標(biāo)方程為: ,

曲線的直角坐標(biāo)方程為: ,

曲線的參數(shù)方程為: 為參數(shù))

2)設(shè)點(diǎn)的坐標(biāo),則點(diǎn)到直線的距離為:

當(dāng)時(shí),點(diǎn),此時(shí)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是自然對數(shù)的底數(shù)).

1)若,求函數(shù)的單調(diào)區(qū)間;

2)若 內(nèi)無極值,求的取值范圍;

3)設(shè),求證: 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 的夾角為60°.
(1)若 都是單位向量,求|2 + |;
(2)若| |=2, + 與2 ﹣5 垂足,求| |.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,b>0,且a2+b2= ,若a+b≤m恒成立, (Ⅰ)求m的最小值;
(Ⅱ)若2|x﹣1|+|x|≥a+b對任意的a,b恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)f(x),若存在x∈R,使f(x0)=x0成立,則稱x0為f(x)的不動(dòng)點(diǎn).已知函數(shù)f(x)=ax2+(b+1)x+(b﹣1)(a≠0).
(1)當(dāng)a=1,b=2時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)若對任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;
(3)在(2)的條件下,若f(x)的兩個(gè)不動(dòng)點(diǎn)為x1 , x2 , 且f(x1)+x2= ,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某河道中過度滋長一種藻類,環(huán)保部門決定投入生物凈化劑凈化水體. 因技術(shù)原因,第t分鐘內(nèi)投放凈化劑的路徑長度 (單位:m),凈化劑凈化水體的寬度 (單位:m)是時(shí)間t(單位:分鐘)的函數(shù): (由單位時(shí)間投放的凈化劑數(shù)量確定,設(shè)為常數(shù),且).

(1)試寫出投放凈化劑的第t分鐘內(nèi)凈化水體面積的表達(dá)式;

(2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足: .

(1)若,求數(shù)列的通項(xiàng)公式;

(2)若.

求證:數(shù)列為等差數(shù)列;

記數(shù)列的前項(xiàng)和為,求滿足的所有正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分13分)

品酒師需定期接受酒味鑒別功能測試,一種通常采用的測試方法如下:拿出瓶外觀相同但品質(zhì)不同的酒讓其品嘗,要求其按品質(zhì)優(yōu)劣為它們排序;經(jīng)過一段時(shí)間,等其記憶淡忘之后,再讓其品嘗這瓶酒,并重新按品質(zhì)優(yōu)劣為它們排序,這稱為一輪測試。根據(jù)一輪測試中的兩次排序的偏離程度的高低為其評為。

現(xiàn)設(shè),分別以表示第一次排序時(shí)被排為1,2,3,4的四種酒在第二次排序時(shí)的序號(hào),并令

,

是對兩次排序的偏離程度的一種描述。

()寫出的可能值集合;

()假設(shè)等可能地為1,2,3,4的各種排列,求的分布列;

()某品酒師在相繼進(jìn)行的三輪測試中,都有,

(i)試按(Ⅱ)中的結(jié)果,計(jì)算出現(xiàn)這種現(xiàn)象的概率(假定各輪測試相互獨(dú)立);

(ii)你認(rèn)為該品酒師的酒味鑒別功能如何?說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知對任意的n∈N* , 存在a,b∈R,使得1×(n2﹣12)+2×(n2﹣22)+3×(n2﹣32)+…+n(n2﹣n2)= (an2+b)
(1)求a,b的值;
(2)用數(shù)學(xué)歸納法證明上述恒等式.

查看答案和解析>>

同步練習(xí)冊答案