【題目】《上海市生活垃圾管理條例》于2019年7月1日正式實施,某小區(qū)全面實施垃圾分類處理,已知該小區(qū)每月垃圾分類處理量不超過300噸,每月垃圾分類處理成本(元)與每月分類處理量(噸)之間的函數關系式可近似表示為,而分類處理一噸垃圾小區(qū)也可以獲得300元的收益.
(1)該小區(qū)每月分類處理多少噸垃圾,才能使得每噸垃圾分類處理的平均成本最低;
(2)要保證該小區(qū)每月的垃圾分類處理不虧損,每月的垃圾分類處理量應控制在什么范圍?
科目:高中數學 來源: 題型:
【題目】如圖,已知圓:()和雙曲線:(),記與軸正半軸、軸負半軸的公共點分別為、,又記與在第一、第四象限的公共點分別為、.
(1)若,且恰為的左焦點,求的兩條漸近線的方程;
(2)若,且,求實數的值;
(3)若恰為的左焦點,求證:在軸上不存在這樣的點,使得.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若存在與正實數,使得成立,則稱函數在處存在距離為的對稱點,把具有這一性質的函數稱之為“型函數”.
(1)設,試問是否是“型函數”?若是,求出實數的值;若不是,請說明理由;
(2)設對于任意都是“型函數”,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直線平面,四邊形是正方形,且,點,,分別是線段,,的中點.
(1)求異面直線與所成角的大小(結果用反三角表示);
(2)在線段上是否存在一點,使,若存在,求出的長,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果數列對于任意,都有,其中為常數,則稱數列是“間等差數列”,為“間公差”.若數列滿足,,.
(1)求證:數列是“間等差數列”,并求間公差;
(2)設為數列的前n項和,若的最小值為-153,求實數的取值范圍;
(3)類似地:非零數列對于任意,都有,其中為常數,則稱數列是“間等比數列”,為“間公比”.已知數列中,滿足,,,試問數列是否為“間等比數列”,若是,求最大的整數使得對于任意,都有;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若
(1)當時,設所對應的自變量取值區(qū)間的長度為(閉區(qū)間的長度為),試求的最大值;
(2)是否存在這樣的使得當時,?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下圖為函數的部分圖象,、是它與軸的兩個交點,、分別為它的最高點和最低點,是線段的中點,且為等腰直角三角形.
(1)求的解析式;
(2)將函數圖象上的每個點的橫坐標縮短為原來的一半,再向左平移個單位長度得到的圖象,求的解析式及單調增區(qū)間,對稱中心.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校從參加高一年級期中考試的學生中抽出50名學生,并統計了她們的數學成績(成績均為整數且滿分為150分),得到的樣本頻率分布表如下:
分組 | 頻數 | 頻率 |
2 | 0.04 | |
3 | 0.06 | |
14 | 0.28 | |
15 | 0.30 | |
4 | 0.08 | |
合計 |
(1)在給出的樣本頻率分布表中,求,,,的值;
(2)估計成績在120分以上(含120分)學生的比例;
(3)抽取的50名學生中,為了幫助成績差的學生提高數學成績,學校決定成立“二幫一”小組,即從成績在的學生中選兩位同學,共同幫助成績在中的某一位同學.已知甲同學的成績?yōu)?2分,乙同學的成績?yōu)?35分,求甲、乙兩同學恰好被安排在同一小組的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com