【題目】在平面直角坐標系xOy中,已知定點F(1,0),點A在x軸的非正半軸上運動,點B在y軸上運動,滿足0,A關(guān)于點B的對稱點為M,設點M的軌跡為曲線C.
(1)求C的方程;
(2)已知點G(3,﹣2),動直線x=t(t>3)與C相交于P,Q兩點,求過G,P,Q三點的圓在直線y=﹣2上截得的弦長的最小值.
【答案】(1);(2)
【解析】
(1)設A(a,0),B(0,b),M(x,y),運用向量的數(shù)量積的坐標表示和中點坐標公式,結(jié)合代入法,化簡可得所求曲線C的方程;
(2)設P(t,2),Q(t,﹣2),設E(m,0),由|EG|=|EP|,運用兩點的距離公式,求得圓E的方程,再令y=﹣2,求得圓在直線y=﹣2上截得的弦長,結(jié)合基本不等式,即可得到所求最小值.
(1)設A(a,0),B(0,b),M(x,y),
由點F(1,0),0,所以,
又B為AM的中點,
所以0,b,所以a=﹣x,
將代入可得
所以C的方程為;
(2)由(1)可得拋物線C的方程為,令x=t,可得,
設P(t,2),Q(t,﹣2),由P,Q關(guān)于x軸對稱,
所以過G,P,Q三點的圓E的圓心在x軸上,
設E(m,0),由|EG|=|EP|,G(3,﹣2),
可得,
化簡整理可得m,
圓E的方程為
令y=﹣2,可得
所以圓E在直線y=﹣2上截得的弦長為
又因為且
所以,
所以,
當且僅當即時取得等號.
所以當t=3+2時,圓E在直線y=﹣2上截得的弦長的最小值為4+4.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正方體的六個面的中心可構(gòu)成一個正八面體,現(xiàn)從正方體內(nèi)部任取一個點,則該點落在這個正八面體內(nèi)部的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某土特產(chǎn)超市為預估2020年元旦期間游客購買土特產(chǎn)的情況,對2019年元旦期間的90位游客購買情況進行統(tǒng)計,得到如下人數(shù)分布表.
(1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認為購買金額是否少于60元與性別有關(guān).
(2)為吸引游客,該超市推出一種優(yōu)惠方案,購買金額不少于60元可抽獎3次,每次中獎概率為p(每次抽獎互不影響,且p的值等于人數(shù)分布表中購買金額不少于60元的頻率),中獎1次減5元,中獎2次減10元,中獎3次減15元.若游客甲計劃購買80元的土特產(chǎn),請列出實際付款數(shù)X(元)的分布列并求其數(shù)學期望.
附:參考公式和數(shù)據(jù):,.
附表:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“團購”已經(jīng)滲透到我們每個人的生活,這離不開快遞行業(yè)的發(fā)展,下表是2013-2017年全國快遞業(yè)務量(x億件:精確到0.1)及其增長速度(y%)的數(shù)據(jù)
(1)試計算2012年的快遞業(yè)務量;
(2)分別將2013年,2014年,…,2017年記成年的序號t:1,2,3,4,5;現(xiàn)已知y與t具有線性相關(guān)關(guān)系,試建立y關(guān)于t的回歸直線方程;
(3)根據(jù)(2)問中所建立的回歸直線方程,估算2019年的快遞業(yè)務量
附:回歸直線的斜率和截距地最小二乘法估計公式分別為:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著現(xiàn)代電子技術(shù)的迅猛發(fā)展,關(guān)于元件和系統(tǒng)可靠性的研究已發(fā)展成為一門新的學科——可靠性理論.在可靠性理論中,一個元件正常工作的概率稱為該元件的可靠性.元件組成系統(tǒng),系統(tǒng)正常工作的概率稱為該系統(tǒng)的可靠性.現(xiàn)有(,)種電子元件,每種2個,每個元件的可靠性均為().當某元件不能正常工作時,該元件在電路中將形成斷路.現(xiàn)要用這個元件組成一個電路系統(tǒng),有如下兩種連接方案可供選擇,當且僅當從A到B的電路為通路狀態(tài)時,系統(tǒng)正常工作.
(1)(i)分別寫出按方案①和方案②建立的電路系統(tǒng)的可靠性、(用和表示);
(ii)比較與的大小,說明哪種連接方案更穩(wěn)定可靠;
(2)設,,已知按方案②建立的電路系統(tǒng)可以正常工作,記此時系統(tǒng)中損壞的元件個數(shù)為,求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,直角梯形中,,,,四邊形為矩形,,平面平面.
(1)求證:平面;
(2)求二面角的正弦值;
(3)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com