【題目】數(shù)學(xué)家歐拉1765年在其所著的《三角形幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知ABC的頂點A(2,0),B(0,4),若其歐拉線的方程為xy+2=0,則頂點C的坐標(biāo)是(  )

A. (-4,0) B. (0,-4) C. (4,0) D. (4,0)(-4,0)

【答案】A

【解析】分析:設(shè)出點C的坐標(biāo),由重心坐標(biāo)公式求得重心,代入歐拉線得一方程,求出AB的垂直平分線,和歐拉線方程聯(lián)立求得三角形的外心,由外心到兩個頂點的距離相等得另一方程,兩方程聯(lián)立求得點C的坐標(biāo).

詳解:

設(shè)C(m,n),由重心坐標(biāo)公式得,

三角形ABC的重心為(,),

代入歐拉線方程,得+2=0,

整理,得mn+4=0,①

AB的中點為(1,2),kAB=-2,

AB的中垂線方程為y-2=(x-1),即x-2y+3=0.

聯(lián)立解得

∴△ABC的外心為(-1,1).

(m+1)2+(n-1)2=32+12=10,

整理,得m2n2+2m-2n=8,②

聯(lián)立①②,得m=-4,n=0m=0,n=4.

當(dāng)m=0,n=4BC重合,舍去.

頂點C的坐標(biāo)是(-4,0).

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)兩種產(chǎn)品,按計劃每天生產(chǎn)各不得少于10噸,已知生產(chǎn)產(chǎn)品噸需要用煤9噸,電4度,勞動力3個(按工作日計算).生產(chǎn)產(chǎn)品1噸需要用煤4噸,電5度,勞動力10個,如果產(chǎn)品每噸價值7萬元, 產(chǎn)品每噸價值12萬元,而且每天用煤不超過300噸,用電不超過200度,勞動力最多只有300個,每天應(yīng)安排生產(chǎn)兩種產(chǎn)品各多少才是合理的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 ,直線過定點.

(Ⅰ)若與圓相切,求的方程;

(Ⅱ)若與圓相交于、兩點,求的面積的最大值,并求此時直線的方程.(其中點是圓的圓心)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是圓上任意一點,過軸的垂線段 為垂足.當(dāng)點在圓上運動時,線段中點的軌跡為曲線(包括點和點),為坐標(biāo)原點.

Ⅰ)求曲線的方程;

Ⅱ)直線與曲線相切,且與圓相交于兩點,當(dāng)的面積最大時,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【河南省新鄉(xiāng)市2017屆高三上學(xué)期第一次調(diào)研】設(shè)為坐標(biāo)原點,已知橢圓的離心率為,拋物線的準(zhǔn)線方程為

1)求橢圓和拋物線的方程;

2)設(shè)過定點的直線與橢圓交于不同的兩點,若在以為直徑的圓的外部,求直

的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)證明當(dāng)時,關(guān)于的不等式恒成立;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個命題:①若,則②若,則;③若,則;④若, ,則的最小值為9;其中正確命題的序號是______(將你認(rèn)為正確的命題序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(1)當(dāng)時,求函數(shù)處的切線方程;

(2)若函數(shù)在定義域上有且只有一個極值點,求實數(shù)的取值范圍;

(3)若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形, ,

.

(1)求直線與平面所成角的正弦值;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案