【題目】為了預(yù)防某流感病毒,某學(xué)校對教室進行藥熏消毒,室內(nèi)每立方米空氣中的含藥量(單位:毫克)隨時間(單位:)的變化情況如下圖所示,在藥物釋放的過程中,與成正比:藥物釋放完畢后,與的函數(shù)關(guān)系式為(為常數(shù)),根據(jù)圖中提供的信息,回答下列問題:
(1)寫出從藥物釋放開始,與之間的函數(shù)關(guān)系式.
(2)據(jù)測定,當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時,學(xué)生方可進教室學(xué)習(xí),那么從藥物釋放開始,至少需要經(jīng)過多少小時后,學(xué)生才能回到教空?
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,根據(jù)經(jīng)驗,其次品率與日產(chǎn)量 (萬件)之間滿足關(guān)系, (其中為常數(shù),且,已知每生產(chǎn)1萬件合格的產(chǎn)品以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元(注:次品率=次品數(shù)/生產(chǎn)量, 如表示每生產(chǎn)10件產(chǎn)品,有1件次品,其余為合格品).
(1)試將生產(chǎn)這種產(chǎn)品每天的盈利額 (萬元)表示為日產(chǎn)量 (萬件)的函數(shù);
(2)當(dāng)日產(chǎn)量為多少時,可獲得最大利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的頂點為坐標(biāo)原點,焦點在軸的正半軸上,點是拋物線上的一點,以為圓心,2為半徑的圓與軸相切,切點為.
(I)求拋物線的標(biāo)準(zhǔn)方程:
(Ⅱ)設(shè)直線在軸上的截距為6,且與拋物線交于,兩點,連接并延長交拋物線的準(zhǔn)線于點,當(dāng)直線恰與拋物線相切時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為1的正方體中,點在上移動,點在上移動,,連接.
(1)證明:對任意,總有∥平面;
(2)當(dāng)的長度最小時,求二面角的平面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
1當(dāng)時,求不等式的解集;
2若關(guān)于x的不等式有實數(shù)解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為實常數(shù).
(1)若當(dāng)時,在區(qū)間上的最大值為,求的值;
(2)對任意不同兩點,,設(shè)直線的斜率為,若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓()的離心率是,點在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點,過點的動直線與橢圓交于兩點。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限(年)和所支出的年平均維修費用(萬元)(即維修費用之和除以使用年限),有如下的統(tǒng)計資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
維修費用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點圖;
(2)求關(guān)于的線性回歸方程;
(3)估計使用年限為10年時所支出的年平均維修費用是多少?
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的離心率為,頂點為,,,,且.
(1)求橢圓的方程;
(2)若是橢圓上除頂點外的任意一點,直線交軸于點,直線交于點.設(shè)的斜率為,的斜率為,試問是否為定值?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com