【題目】已知,如圖,拋物線的方程為,直線的方程為,直線交拋物線于, 兩點,點為線段中點,直線, 分別與拋物線切于點, .
()求:線段的長.
()直線平行于拋物線的對稱軸.
()作直線直線,分別交拋物線和兩條已知切線, 于點, , , .
求證: .
【答案】() ()見解析(3)見解析
【解析】試題分析:(1)將直線與拋物線聯(lián)立消去,設(shè), ,通過韋達(dá)定理求出, 的值,代入弦長公式得答案;(2)由(1)可求出,再求出直線與的切線方程,聯(lián)系方程組,求出點的坐標(biāo),比較與的橫坐標(biāo)即可;(3)由直線∥直線l,可設(shè)直線方程為,與直線交于一點,由為中點,可得為中點,將直線與拋物線聯(lián)立消去,設(shè), ,通過韋達(dá)定理求出的值,再根據(jù)即可求得.
試題解析:()直線與拋物線相交于, 兩點,
,整理得,
∴,
,
∴, ,
∴
.
()∵,
設(shè)過點的切線方程為,
切點,
∴,有且僅有一根,
整理得
直線的方程為,
同理直線的方程為,
兩者聯(lián)立,解出交點的縱坐標(biāo)、橫坐標(biāo),
,
,
∴點與點的橫坐標(biāo)相同,
即直線平行于軸,
即直線平行于拋物線的對稱軸.
(3)由題意可設(shè)直線方程為,且與直線交于一點
,整理可得
∴
∴
∵直線∥直線l,且為中點
∴為中點,即
∴,
∴,
∵,
∴
∴
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)滿足,且當(dāng)時,,若對任意的,不等式恒成立,則實數(shù)的最大值是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子中裝有1個紅球和2個白球,這3個球除顏色外完全相同,有放回地連續(xù)抽取2次,每次從中任意抽取出1個球,則:
(1)第一次取出白球,第二次取出紅球的概率;
(2)取出的2個球是1紅1白的概率;
(3)取出的2個球中至少有1個白球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓 =l (a>b>0)的焦距為2,離心率為 ,橢圓的右頂點為A.
(1)求該橢圓的方程:
(2)過點D( ,﹣ )作直線PQ交橢圓于兩個不同點P,Q,求證:直線AP,AQ的
斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱的底面是菱形, , , .
(Ⅰ)證明:平面平面;
(Ⅱ)若,直線上是否存在點,使得與平面所成角的正弦值為.若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎.抽獎方法是:從裝有個紅球,和個白球的甲箱與裝有個紅球,和個白球,的乙箱中,各隨機摸出個球,若模出的個球都是紅球則中獎,否則不中獎.
(1)用球的標(biāo)號列出所有可能的模出結(jié)果;
(2)有人認(rèn)為:兩個箱子中的紅球比白球多所以中獎的概率大于不中獎的概率,你認(rèn)為正確嗎?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某基地蔬菜大棚采用水培、無土栽培方式種植各類蔬菜.過去50周的資料顯示,該地周光照量(小時)都在30小時以上,其中不足50小時的周數(shù)有5周,不低于50小時且不超過70小時的周數(shù)有35周,超過70小時的周數(shù)有10周.根據(jù)統(tǒng)計,該基地的西紅柿增加量(百斤)與使用某種液體肥料(千克)之間對應(yīng)數(shù)據(jù)為如圖所示的折線圖.
(1)依據(jù)數(shù)據(jù)的折線圖,是否可用線性回歸模型擬合與的關(guān)系?請計算相關(guān)系數(shù)并加以說明(精確到0.01).(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)
(2)蔬菜大棚對光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀最多可運行臺數(shù)受周光照量限制,并有如下關(guān)系:
周光照量(單位:小時) | |||
光照控制儀最多可運行臺數(shù) | 3 | 2 | 1 |
若某臺光照控制儀運行,則該臺光照控制儀周利潤為3000元;若某臺光照控制儀未運行,則該臺光照控制儀周虧損1000元.若商家安裝了3臺光照控制儀,求商家在過去50周周總利潤的平均值.
附:相關(guān)系數(shù)公式,參考數(shù)據(jù),.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com