【題目】設(shè)函數(shù)是偶函數(shù).

1)若不等式對(duì)任意實(shí)數(shù)成立,求實(shí)數(shù)的取值范圍;

2)設(shè)函數(shù),若上有零點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】1;(2

【解析】

1)根據(jù)偶函數(shù)得到,化簡(jiǎn)得到,根據(jù)函數(shù)的單調(diào)性得到答案.

2)題目等價(jià)于上有解,令,則,令,則上單調(diào)遞增,,,根據(jù)函數(shù)的單調(diào)性得到答案.

1是偶函數(shù),

,故.

不等式即為,即,

因?yàn)?/span>,當(dāng)且僅當(dāng)時(shí),取等號(hào),所以,

由函數(shù)上是增函數(shù)知的最小值為3

所以,故實(shí)數(shù)的取值范圍是.

2上有零點(diǎn),

即為上有解,

因?yàn)?/span>,所以,

所以條件等價(jià)于上有解.

,則,令,則上單調(diào)遞增,.

設(shè),任取,則,

.

,則,所以,即上單調(diào)遞增;

,則,所以,即上單調(diào)遞減.

所以函數(shù)時(shí)取得最小值,且最小值,所以,

從而,滿足條件的實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解戶籍性別對(duì)生育二胎選擇傾向的影響,某地從育齡人群中隨機(jī)抽取了容量為的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)民戶籍各人;男性人,女性.繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖(如圖所示),其中陰影部分表示傾向選擇生育二胎的對(duì)應(yīng)比例,則下列敘述中錯(cuò)誤的是(

A.是否傾向選擇生育二胎與戶籍有關(guān)

B.是否傾向選擇生育二胎與性別無(wú)關(guān)

C.傾向選擇生育二胎的人員中,男性人數(shù)與女性人數(shù)相同

D.傾向選擇不生育二胎的人員中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,正確的個(gè)數(shù)是(

A=的子集有個(gè);

②命題的否定是使得;

函數(shù)取得最大值的充分不必要條件;

④根據(jù)對(duì)數(shù)定義,對(duì)數(shù)式化為指數(shù)式;

⑤若,則的取值范圍為;

.

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問(wèn)題:

(1)求分?jǐn)?shù)在[120,130)內(nèi)的頻率;

(2)估計(jì)本次考試的中位數(shù);

(3)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的上頂點(diǎn)為,右焦點(diǎn)為,直線與圓相切.

(1)求橢圓的方程;

(2)若不過(guò)點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn),且,試探究:直線是否過(guò)定點(diǎn),若是,求該定點(diǎn)的坐標(biāo),若不是,請(qǐng)說(shuō)明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),

1)解方程

2)令,求的值.

3)若是定義在上的奇函數(shù),且對(duì)任意恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)是定義在上的奇函數(shù),且當(dāng)時(shí),.

(Ⅰ)若,求函數(shù)的解析式;

(Ⅱ)若,方程至少有兩個(gè)不等的解,求的取值集合;

(Ⅲ)若函數(shù)上的單調(diào)減函數(shù),

①求的取值范圍;

②若不等式成立,求實(shí)數(shù)的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】市實(shí)施全域旅游,將鄉(xiāng)村旅游公路建設(shè)與特色田園鄉(xiāng)村發(fā)展結(jié)合,精心打造全長(zhǎng)365公里的“1號(hào)公路,對(duì)內(nèi)串聯(lián)區(qū)域內(nèi)主要景區(qū)景點(diǎn)和自然村,對(duì)外通達(dá)周邊縣(市),以路引景、為景串線,形成一個(gè)大環(huán)小圈、內(nèi)連外引的路網(wǎng)體系.如今的“1號(hào)公路,不僅成為該市旅游業(yè)的顏值擔(dān)當(dāng),更成為推動(dòng)鄉(xiāng)村振興的實(shí)力擔(dān)當(dāng),農(nóng)村居住環(huán)境日益改善,新農(nóng)村別墅隨處可見(jiàn).圖①是一棟新農(nóng)村別墅,它由上部屋頂和下部主體兩部分組成.如圖②,屋頂由四坡屋面構(gòu)成,其中前后兩坡屋面是全等的等腰梯形,左右兩坡屋面是全等的三角形.點(diǎn)在平面上的射影分別為(即:平面,垂足為;,垂足為.已知,梯形的面積是面積的2.2..

1)當(dāng)時(shí),求屋頂面積的大小;

2)求屋頂面積關(guān)于的函數(shù)關(guān)系式;

3)已知上部屋頂造價(jià)與屋頂面積成正比,比例系數(shù)為為正的常數(shù)),下部主體造價(jià)與其高度成正比,比例系數(shù)為.現(xiàn)欲造一棟上、下總高度為的別墅,試問(wèn):當(dāng)為何值時(shí),總造價(jià)最低?

查看答案和解析>>

同步練習(xí)冊(cè)答案