【題目】已知拋物線的焦點為,過點的直線交拋物線兩點.

1)當時,求直線的方程;

2)若過點且垂直于直線的直線與拋物線交于、兩點,記的面積分別為,求的最小值.

【答案】1;(2.

【解析】

1)設直線的方程為,設點、,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,結(jié)合條件可求得的值,進而可求得直線的方程;

2)設直線的方程為,設點、,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,利用弦長公式求得,利用三角形的面積公式可求得,同理可得出的表達式,然后利用基本不等式可求得的最小值.

1)直線過的定點在橫軸上,且直線與拋物線相交,則斜率一定不能為,所以可設直線方程為.

聯(lián)立,消去

由韋達定理得,

所以.

因為,所以,解得.

所以直線的方程為;

2)根據(jù)(1),設直線的方程為.

聯(lián)立,消去,

由韋達定理得,

.

因為直線與直線垂直,

且當時,直線的方程為,則此時直線的方程為.但此時直線與拋物線沒有兩個交點,

所以不符合題意,所以.

所以直線的斜率為,可得,

當且僅當時,等號成立,因此,的最小值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】天上有些恒星的亮度是會變化的,其中一種稱為造父(型)變星,本身體積會膨脹收縮造成亮度周期性的變化.第一顆被描述的經(jīng)典造父變星是在1784.

上圖為一造父變星的亮度隨時間的周期變化圖,其中視星等的數(shù)值越小,亮度越高,則此變星亮度變化的周期、最亮時視星等,分別約是(

A.5.53.7B.5.4,4.4C.6.53.7D.5.5,4.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《周髀算經(jīng)》有這樣一個問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個節(jié)氣日影長減等寸,雨水、驚蟄、春分、清明日影之和為三丈二尺,前七個節(jié)氣日影之和為七丈三尺五寸,問谷雨日影長為(

A.七尺五寸B.六尺五寸C.五尺五寸D.四尺五寸

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐中,.

1)求證:

2)若點 上一點,且,求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有9位身高各異的同學拍照留念,分成前后兩排,前排4人,后排5人,要求每排同學的身高從中間到兩邊依次遞減,則不同的排隊方式有________種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線與直線只有一個公共點,點是拋物線上的動點.

1)求拋物線的方程;

2)①若,求證:直線過定點;

②若是拋物線上與原點不重合的定點,且,求證:直線的斜率為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知無窮數(shù)列滿足:,

(Ⅰ)若;

(。┣笞C:

(ⅱ)數(shù)列的前項和為,求證:;

(Ⅱ)若對任意的,都有,寫出的取值范圍并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有一排10個位置的空停車場,甲、乙、丙三輛不同的車去停放,要求每輛車左右兩邊都有空車位且甲車在乙、丙兩車之間的停放方式共有_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】6個數(shù)2、01、9、2019按任意次序排成一行,拼成一個8位數(shù)(首位不為0),則產(chǎn)生的不同的8位數(shù)的個數(shù)為______ .

查看答案和解析>>

同步練習冊答案