【題目】已知拋物線的焦點為,過點的直線交拋物線于和兩點.
(1)當時,求直線的方程;
(2)若過點且垂直于直線的直線與拋物線交于、兩點,記與的面積分別為與,求的最小值.
【答案】(1)或;(2).
【解析】
(1)設直線的方程為,設點、,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,結(jié)合條件可求得的值,進而可求得直線的方程;
(2)設直線的方程為,設點、,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,利用弦長公式求得,利用三角形的面積公式可求得,同理可得出的表達式,然后利用基本不等式可求得的最小值.
(1)直線過的定點在橫軸上,且直線與拋物線相交,則斜率一定不能為,所以可設直線方程為.
聯(lián)立,消去得,
由韋達定理得,,
所以.
因為,所以,解得.
所以直線的方程為或;
(2)根據(jù)(1),設直線的方程為.
聯(lián)立,消去得,
由韋達定理得,,
則.
因為直線與直線垂直,
且當時,直線的方程為,則此時直線的方程為.但此時直線與拋物線沒有兩個交點,
所以不符合題意,所以.
所以直線的斜率為,可得,
,
當且僅當時,等號成立,因此,的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】天上有些恒星的亮度是會變化的,其中一種稱為造父(型)變星,本身體積會膨脹收縮造成亮度周期性的變化.第一顆被描述的經(jīng)典造父變星是在1784年.
上圖為一造父變星的亮度隨時間的周期變化圖,其中視星等的數(shù)值越小,亮度越高,則此變星亮度變化的周期、最亮時視星等,分別約是( )
A.5.5,3.7B.5.4,4.4C.6.5,3.7D.5.5,4.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《周髀算經(jīng)》有這樣一個問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個節(jié)氣日影長減等寸,雨水、驚蟄、春分、清明日影之和為三丈二尺,前七個節(jié)氣日影之和為七丈三尺五寸,問谷雨日影長為( )
A.七尺五寸B.六尺五寸C.五尺五寸D.四尺五寸
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有9位身高各異的同學拍照留念,分成前后兩排,前排4人,后排5人,要求每排同學的身高從中間到兩邊依次遞減,則不同的排隊方式有________種.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線與直線只有一個公共點,點是拋物線上的動點.
(1)求拋物線的方程;
(2)①若,求證:直線過定點;
②若是拋物線上與原點不重合的定點,且,求證:直線的斜率為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知無窮數(shù)列滿足:,.
(Ⅰ)若;
(。┣笞C:;
(ⅱ)數(shù)列的前項和為且,求證:;
(Ⅱ)若對任意的,都有,寫出的取值范圍并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有一排10個位置的空停車場,甲、乙、丙三輛不同的車去停放,要求每輛車左右兩邊都有空車位且甲車在乙、丙兩車之間的停放方式共有_________種.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將6個數(shù)2、0、1、9、20、19按任意次序排成一行,拼成一個8位數(shù)(首位不為0),則產(chǎn)生的不同的8位數(shù)的個數(shù)為______ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com