精英家教網 > 高中數學 > 題目詳情

已知曲線C:ρsin(θ+)=,曲線P:ρ2-4ρcosθ+3=0,
(1)求曲線C,P的直角坐標方程.
(2)設曲線C和曲線P的交點為A,B,求|AB|.

(1) x2+y2-4x+3=0   (2)

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知曲線為參數),曲線,將的橫坐標伸長為原來的2倍,縱坐標縮短為原來的得到曲線.
(1)求曲線的普通方程,曲線的直角坐標方程;
(2)若點P為曲線上的任意一點,Q為曲線上的任意一點,求線段的最小值,并求此時的P的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在平面直角坐標系中,已知直線的參數方程是(為參數);以為極點,軸正半軸為極軸的極坐標系中,圓的極坐標方程為.
(1)寫出直線的普通方程與圓的直角坐標方程;
(2)由直線上的點向圓引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知曲線C的極坐標方程為ρ2=,以極點為原點,極軸所在直線為x軸建立平面直角坐標系.
(1)求曲線C的直角坐標方程及參數方程.
(2)若P(x,y)是曲線C上的一個動點,求x+2y的最小值,并求P點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在直角坐標系xoy中,曲線C1的參數方程為(t為參數),P為C1上的動點,Q為線段OP的中點.
(1)求點Q的軌跡C2的方程;
(2)在以O為極點,x軸的正半軸為極軸(兩坐標系取相同的長度單位)的極坐標系中,N為曲線p=2sinθ上的動點,M為C2與x軸的交點,求|MN|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在直角坐標系xOy中,以O為極點,x軸非負半軸為極軸建立極坐標系,曲線C的極坐標方程為ρcos(θ-)=1,M,N分別為C與x軸,y軸的交點.
(1)寫出C的直角坐標方程,并求M,N的極坐標.
(2)設MN的中點為P,求直線OP的極坐標方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知曲線C的極坐標方程為ρ=4cos θ,以極點為原點,極軸為x軸正半軸建立平面直角坐標系,設直線l的參數方程為 (t為參數).
(1)求曲線C的直角坐標方程與直線l的普通方程;
(2)設曲線C與直線l相交于P,Q兩點,以PQ為一條邊作曲線C的內接矩形,求該矩形的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知直線的參數方程為(t為參數),曲線C的參數方程為
為參數).
(1)已知在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為,判斷點P與直線的位置關系;
(2)設點Q是曲線C上的一個動點,求點Q到直線的距離的最小值與最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知在直角坐標系中,曲線的參數方程為為非零常數,為參數),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,直線的方程為.
(Ⅰ)求曲線的普通方程并說明曲線的形狀;
(Ⅱ)是否存在實數,使得直線與曲線有兩個不同的公共點,且(其中為坐標原點)?若存在,請求出;否則,請說明理由.

查看答案和解析>>

同步練習冊答案