【題目】某高校為調查學生喜歡“應用統(tǒng)計”課程是否與性別有關,隨機抽取了選修課程的60名學生,得到數(shù)據(jù)如下表:

喜歡統(tǒng)計課程

不喜歡統(tǒng)計課程

合計

男生

20

10

30

女生

10

20

30

合計

30

30

60

(1)判斷是否有99.5%的把握認為喜歡“應用統(tǒng)計”課程與性別有關?

(2)用分層抽樣的方法從喜歡統(tǒng)計課程的學生中抽取6名學生作進一步調查,將這6名學生作為一個樣本,從中任選3人,求恰有2個男生和1個女生的概率.

下面的臨界值表供參考:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

【答案】(1)見解析;(2).

【解析】分析:(1)計算K2的值,與臨界值比較,即可得到結論;

(2)確定樣本中有4個男生,2個女生,利用列舉法確定基本事件,即可求得結論.

詳解:(1)由公式

所以沒有99.5%的把握認為喜歡統(tǒng)計專業(yè)與性別有關.

(2)設所抽樣本中有m個男生,則人,

所以樣本中有4個男生,2個女生,

從中選出3人的基本事件數(shù)有20種

恰有兩名男生一名女生的事件數(shù)有12種

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)當時,函數(shù),處的切線互相垂直,求的值;

(2)當函數(shù)在定義域內不單調時,求證:;

(3)是否存在實數(shù),使得對任意,都有函數(shù)的圖象在的圖象的下方?若存在,請求出最大整數(shù)的值;若不存在,請說理由.(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形所在的平面與平面垂直,的交點,,且

(Ⅰ)求證:平面;

(Ⅱ)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個機器人每一秒鐘前進一步或后退一步,程序設計師設計的程序是讓機器人以先前進3步,然后再后退2步的規(guī)律移動.如果將機器人放在數(shù)軸的原點,面向正的方向在數(shù)軸上移動(1步的距離為1個單位長度).令表示第秒時機器人所在位置的坐標,且記,則下列結論中錯誤的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某次測驗中,有6位同學的平均成績?yōu)?5分.用xn表示編號為n(n=1,2,…,6)的同學所得成績,且前5位同學同學的成績如表:

n

1

2

3

4

5

x0

70

76

72

70

72


(1)求第6位同學的成績x6及這6位同學成績的標準差s;
(2)若從前5位同學中,隨機地選2位同學,求恰有1位同學成績在區(qū)間[68,75)中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中,點A,B,C的坐標分別為Acosα,sinα),B2,0),C0,2),α∈(0,π).

1)若,求α的值;

2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面給出了2010年亞洲某些國家的國民平均壽命單位:歲

國家

平均壽命

國家

平均壽命

國家

平均壽命

阿曼

阿富汗

59

巴基斯坦

巴林

 

阿聯(lián)酋

馬來西亞

朝鮮

東帝汶

孟加拉國

韓國

柬埔寨

塞浦路斯

老撾

卡塔爾

沙特阿拉伯

蒙古

科威特

 

哈薩克斯坦

緬甸

菲律賓

印度尼西亞

日本

黎巴嫩

土庫曼斯坦

65

泰國

尼泊爾

68

吉爾吉斯斯坦

約旦

土耳其

烏茲別克斯坦

越南

75

伊拉克

也門

中國

以色列

文萊

伊朗

74

新加坡

敘利亞

印度

根據(jù)這40個國家的樣本數(shù)據(jù),得到如圖所示的頻率分布直方圖,其中樣本數(shù)據(jù)的分組區(qū)間為:,,,請根據(jù)上述所提供的數(shù)據(jù),求出頻率分布直方圖中的a,b;

請根據(jù)統(tǒng)計思想,利用中的頻率分布直方圖估計亞洲人民的平均壽命及國民壽命的中位數(shù)保留一位小數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求不等式的解集.

(2)討論不等式的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是矩形,四邊形是梯形, 平面平面, 點的中點.

(1)求證:∥平面;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案