【題目】已知集合A{x|2a1≤x≤3a5},B{x|x<-1,或x16},分別根據(jù)下列條件求實數(shù)a的取值范圍.

1A∩B;(2AA∩B).

【答案】1{a|a≤7};(2{a|a6a}

【解析】

1)根據(jù)A∩B=,可得-1≤2a+1≤x≤3a-5≤16,解不等式可得a的取值范圍;

2)由AA∩B)得AB,分類討論,AA≠,分別建立不等式,即可求實數(shù)a的取值范圍

1)若A,則A∩B成立.

此時2a13a5,

a6

A≠,則解得6≤a≤7

綜上,滿足條件A∩B的實數(shù)a的取值范圍是{a|a≤7}

2)因為AA∩B),且(A∩BA,

所以A∩BA,即AB

顯然A滿足條件,此時a6

A≠,則

解得a∈;由解得a

綜上,滿足條件AA∩B)的實數(shù)a的取值范圍是{a|a6a}

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)對任意實數(shù)恒有且當(dāng),又

1)判斷的奇偶性;

2)求在區(qū)間上的最大值;

3)解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,圓是以的中點為圓心,為半徑的圓.

(1)若圓的切線在軸和軸上截距相等,求切線方程;

(2)若是圓外一點,從向圓引切線,為切點,為坐標(biāo)原點,,求使最小的點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)同時滿足下列兩個條件:

圖象最值點與左右相鄰的兩個對稱中心構(gòu)成等腰直角三角形

的一個對稱中心.

(1)當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;

(2)設(shè),若對任意,總是存在,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中,,P為線段AC上任意一點,則的范圍是( )

A. [1,4] B. [0,4] C. [-2,4] D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,錯誤的是(

A.一條直線與兩個平行平面中的一個平面相交,則必與另一個平面相交

B.平行于同一個平面的兩個不同平面平行

C.若直線l與平面平行,則過平面內(nèi)一點且與直線l平行的直線在平面內(nèi)

D.若直線l不平行于平面,則在平面內(nèi)不存在與l平行的直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)觀眾對某類休育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:

將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.

1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料判斷是否有的把握認(rèn)為“體育迷”與性別有關(guān)?

非體育迷

體育迷

合計

合計

2)將日均收看讀體育節(jié)目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”中有2名女性,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率.

.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)當(dāng)時,的值域是,試求實數(shù)的值;

2)設(shè)關(guān)于的方程的兩個實根為;試問:是否存在實數(shù),使得不等式對任意恒成立?若存在,求實數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且

1)求fx)的解析式;

2)判斷fx)在區(qū)間(0,1)上的單調(diào)性,并用定義法證明.

查看答案和解析>>

同步練習(xí)冊答案