(本小題滿分13分)為抗擊金融風(fēng)暴,某工貿(mào)系統(tǒng)決定對所屬企業(yè)給予低息貸款的扶持,該系統(tǒng)先根據(jù)相關(guān)評分標(biāo)準(zhǔn)對各個(gè)企業(yè)進(jìn)行了評估,并依據(jù)評估得分將這些企業(yè)分別評定為優(yōu)秀、良好、合格、不合格4個(gè)等級,然后根據(jù)評估等級分配相應(yīng)的低息貸款金額,其評估標(biāo)準(zhǔn)和貸款金額如下表:

評估得分

[50,60)

[60,70)

[70,80)

[80,90]

評定類型

不合格

合格

良好

優(yōu)秀

貸款金額(萬元)

0

200

400

800

為了更好地掌控貸款總額,該系統(tǒng)隨機(jī)抽查了所屬部分企業(yè)的評估分?jǐn)?shù),得其頻率分布直方圖如下:

(1)估計(jì)該系統(tǒng)所屬企業(yè)評估得分的中位數(shù)及平均分;

(2)該系統(tǒng)要求各企業(yè)對照評分標(biāo)準(zhǔn)進(jìn)行整改,若整改后優(yōu)秀企業(yè)數(shù)量不變,不合格企業(yè)、合格企業(yè)、良好企業(yè)的數(shù)量依次成等差數(shù)列,系統(tǒng)所屬企業(yè)獲得貸款的均值(即數(shù)學(xué)期望)不低于410萬元,那么整改后不合格企業(yè)占企業(yè)總數(shù)的百分比的最大值是多少?

解:(1)因?yàn)?.015×10=0.15,  0.04×10=0.4,在頻率分布直方圖中,中位數(shù)左邊和右邊的面積相等,所以中位數(shù)在區(qū)間[60,70)內(nèi),

設(shè)中位數(shù)為x,則(60-50)×0.015+(x-60)×0.04=0.5,解得x=68.75

所以估計(jì)該系統(tǒng)所屬企業(yè)評估得分的中位數(shù)是68.75. ………………2分

平均分為:55×0.15+65×0.4+75×0.2+85×0.25=70.5分. ………………4分

(2)依題意,整改后優(yōu)秀企業(yè)的頻率為10×0.025=0.25, ………………5分

不合格企業(yè),合格企業(yè),良好企業(yè)的頻率成等差數(shù)列,設(shè)該等差數(shù)列的首項(xiàng)為a,公差為d,則

………………7分

設(shè)該系統(tǒng)所屬企業(yè)獲得貸款的均值為,則

………………10分

≥410,得450-400a≥410,即a≤0.1.          ………………12分

故整改后不合格企業(yè)占企業(yè)總數(shù)的百分比的最大值是10%.   ………………13分          

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊答案