已知一個長方體交于一頂點的三條棱長之和為1,其表面積為
(1)將長方體的體積V表示為其中一條棱長x的函數(shù)關系,并寫出定義域;
(2)求體積的最大、最小值;
(3)求體積最大時三棱長度.
【答案】分析:(1)根據(jù)一個長方體交于一頂點的三條棱長之和為1,其表面積為,設三條棱長分別為:x,y,z,則x+y+z=1,,從而可得函數(shù)解析式,由此可確定函數(shù)的定義域;
(2)求導函數(shù),求極值點,從而可確定函數(shù)的最值;
(3)由第(2)條件最大時x的值,結合x+y+z=1,,可求三棱長度.
解答:解:(1)設三條棱長分別為:x,y,z,則x+y+z=1,…(1分)
,
∴V==…(4分)
又∵y+z=1-x,,
∴y、z是方程的兩根≤x≤
∴V=( ≤x≤).…(6分)
(2),得…(8分)
時,V有最小值,
時,V有最大值.…(10分)
(3)當V有最大值時,三棱長分別為:.  …(12分)
點評:本題i長方體為載體,考查函數(shù)關系的建立,考查導數(shù)的運用,考查函數(shù)的最值,有綜合性.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知一個長方體交于一頂點的三條棱長之和為1,其表面積為
1627

(1)將長方體的體積V表示為其中一條棱長x的函數(shù)關系,并寫出定義域;
(2)求體積的最大、最小值;
(3)求體積最大時三棱長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知一個長方體交于一頂點的三條棱長之和為1,其表面積為數(shù)學公式
(1)將長方體的體積V表示為其中一條棱長x的函數(shù)關系,并寫出定義域;
(2)求體積的最大、最小值;
(3)求體積最大時三棱長度.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知一個長方體交于一頂點的三條棱長之和為1,其表面積為
16
27

(1)將長方體的體積V表示為其中一條棱長x的函數(shù)關系,并寫出定義域;
(2)求體積的最大、最小值;
(3)求體積最大時三棱長度.

查看答案和解析>>

同步練習冊答案