【題目】在極坐標(biāo)系中,曲線,曲線.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸正半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)).
(1)求的直角坐標(biāo)方程;
(2)與交于不同的四點(diǎn),這四點(diǎn)在上排列順次為,求的值.
【答案】(1)的直角坐標(biāo)方程為, 的直角坐標(biāo)方程為;(2).
【解析】試題分析:(1)根據(jù), ,將極坐標(biāo)方程化為直角坐標(biāo)方程,(2)將直線參數(shù)方程依次代入的直角坐標(biāo)方程,由圓的幾何性質(zhì)以及參數(shù)幾何意義得 ,再由韋達(dá)定理得,代入求得的值.
試題解析:解:(Ⅰ)因?yàn)?/span>, ,由,得,
所以曲線的直角坐標(biāo)方程為;
由,得,
所以曲線的直角坐標(biāo)方程為.
(Ⅱ)如圖,四點(diǎn)在直線上的排列順序從下到上依次為, , , ,它們對(duì)應(yīng)的參數(shù)分別為, , , .
連接,則為正三角形,所以.
,
將代入,得: ,
即,故,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), (, 為自然對(duì)數(shù)的底數(shù)).
(1)試討論函數(shù)的極值情況;
(2)證明:當(dāng)且時(shí),總有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A={x|﹣1<x≤3},B={x|m≤x<1+3m}
(1)當(dāng)m=1時(shí),求A∪B;
(2)若BRA,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】電視傳媒公司為了解某地區(qū)觀眾對(duì)某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?
非體育迷 | 體育迷 | 合計(jì) | |
男 | |||
女 | 10 | 55 | |
合計(jì) |
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方差D(X).
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
附:K2= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知集合M={﹣1,1,2,4}N={0,1,2}給出下列四個(gè)對(duì)應(yīng)法則,其中能構(gòu)成從M到N的函數(shù)是( )
A.y=x2
B.y=x+1
C.y=2x
D.y=log2|x|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)y=f(x)的定義域?yàn)镈,若對(duì)于任意x1、x2∈D,當(dāng)x1+x2=2a時(shí),恒有f(x1)+f(x2)=2b,則稱點(diǎn)(a,b)為函數(shù)y=f(x)圖象的對(duì)稱中心.研究函數(shù)f(x)=x+sinπx﹣3的某一個(gè)對(duì)稱中心,并利用對(duì)稱中心的上述定義,可得到f( )+f( )+…+f( )+f( )的值為( )
A.4027
B.﹣4027
C.8054
D.﹣8054
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中常數(shù).
(Ⅰ)討論在上的單調(diào)性;
(Ⅱ)當(dāng)時(shí),若曲線上總存在相異兩點(diǎn),使曲線在兩點(diǎn)處的切線互相平行,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)上是世界嚴(yán)重缺水的國(guó)家,城市缺水問(wèn)題較為突出,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個(gè)合理的居民月用水量標(biāo)準(zhǔn)(噸),用水量不超過(guò)的部分按平價(jià)收費(fèi),超過(guò)的部分按議價(jià)收費(fèi),為了了解全市民月用水量的分布情況,通過(guò)抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中 的值;
(Ⅱ)已知該市有80萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說(shuō)明理由;
(Ⅲ)若該市政府希望使的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)(噸),估計(jì)的值,并說(shuō)明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:全集U=R,函數(shù) 的定義域?yàn)榧螦,集合B={x|x2﹣a<0}
(1)求UA;
(2)若A∪B=A,求實(shí)數(shù)a的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com