【題目】已知是自然對數(shù)的底數(shù),函數(shù)的定義域都是.

(1)求函數(shù)在點(diǎn)處的切線方程;

(2)判斷函數(shù)零點(diǎn)個(gè)數(shù);

(3)用表示的最小值,設(shè),,若函數(shù)上為增函數(shù),求實(shí)數(shù)的取值范圍.

【答案】(1);(2)函數(shù)只有一個(gè)零點(diǎn);(3).

【解析】

(1)先求導(dǎo)數(shù),代入為直線的斜率,利用點(diǎn)斜式可求直線方程;

(2)先求導(dǎo)數(shù),結(jié)合導(dǎo)數(shù)的符號,判定零點(diǎn)的個(gè)數(shù);

(3)為增函數(shù),轉(zhuǎn)化為恒成立,然后利用分離參數(shù)法求解.

(1)∵,∴切線的斜率,.

∴函數(shù)在點(diǎn)處的切線方程為.

(2)∵,∴,,

存在零點(diǎn),且.∵

∴當(dāng)時(shí),;當(dāng)時(shí),由

.∴上是減函數(shù).

∴若,,則.∴函數(shù)只有一個(gè)零點(diǎn),且.

(3)解:,故

∵函數(shù)只有一個(gè)零點(diǎn),∴,即.∴.

為增函數(shù),恒成立.

當(dāng)時(shí),即在區(qū)間上恒成立.

設(shè),只需,

單調(diào)遞減,在單調(diào)遞增.

的最小值.

當(dāng)時(shí),,由上述得,則恒成立.

綜上述,實(shí)數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為更好地落實(shí)農(nóng)民工工資保證金制度,南方某市勞動(dòng)保障部門調(diào)查了年下半年該市名農(nóng)民工(其中技術(shù)工、非技術(shù)工各名)的月工資,得到這名農(nóng)民工月工資的中位數(shù)為百元(假設(shè)這名農(nóng)民工的月工資均在(百元)內(nèi))且月工資收入在(百元)內(nèi)的人數(shù)為,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:

(Ⅰ)求,的值;

(Ⅱ)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有名,非技術(shù)工有名,則能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?

參考公式及數(shù)據(jù):,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用長為18 cm的鋼條圍成一個(gè)長方體形狀的框架,要求長方體的長與寬之比為21,問該長方體的長、寬、高各為多少時(shí),其體積最大?最大體積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

)證明:當(dāng)時(shí),;

)設(shè)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)如圖, 是圓的直徑,點(diǎn)是圓上異于的點(diǎn), 垂直于圓所在的平面,且

)若為線段的中點(diǎn),求證平面

)求三棱錐體積的最大值;

)若,點(diǎn)在線段上,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某賽季甲、乙兩位運(yùn)動(dòng)員每場比賽得分的莖葉圖如圖所示.

(1)從甲、乙兩人的這5次成績中各隨機(jī)抽取一個(gè),求甲的成績比乙的成績高的概率;

(2)試用統(tǒng)計(jì)學(xué)中的平均數(shù)、方差知識對甲、乙兩位運(yùn)動(dòng)員的測試成績進(jìn)行分析.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知圓及點(diǎn)

(1)若直線平行于,與圓相交于,兩點(diǎn),,求直線的方程;

(2)在圓上是否存在點(diǎn),使得?若存在,求點(diǎn)的個(gè)數(shù);若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計(jì),頻率分布直方圖如圖所示:

1)估計(jì)這組數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表);

2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取5個(gè),再從這5個(gè)中隨機(jī)抽取2個(gè),求這2個(gè)芒果都來自同一個(gè)質(zhì)量區(qū)間的概率;

3)某經(jīng)銷商來收購芒果,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有1000個(gè),經(jīng)銷商提出以下兩種收購方案:

方案①:所有芒果以9/千克收購

方案②:對質(zhì)量低于250克的芒果以2/個(gè)收購,對質(zhì)量高于或等于250克的芒果以3/個(gè)收購.通過計(jì)算確定種植園選擇哪種方案獲利更多.

參考數(shù)據(jù):.

查看答案和解析>>

同步練習(xí)冊答案