【題目】某工廠今年1月、2月、3月生產(chǎn)某種產(chǎn)品的數(shù)量分別是1萬件、2萬件、1.3萬件,為了預(yù)測以后每個月的產(chǎn)量,以這三個月的產(chǎn)品數(shù)量為依據(jù),用一個函數(shù)模擬該產(chǎn)品的月產(chǎn)量y與月份x的關(guān)系,模擬函數(shù)可以選用二次函數(shù)或函數(shù)yabxc(其中ab,c為常數(shù)),已知4月份該產(chǎn)品的產(chǎn)量為1.37萬件,請問用以上哪個函數(shù)作為模擬函數(shù)較好?并說明理由.

【答案】選用y=-0.8×0.5x+1.4作為模擬函數(shù)較好.

【解析】試題分析:由題意分別列示求出兩種函數(shù)模型的待求系數(shù),然后分別取x=4求出相應(yīng)的函數(shù)值,比較大小得答案.

試題解析:

根據(jù)題意,該產(chǎn)品的月產(chǎn)量y是月份x的函數(shù),可供選用的函數(shù)有兩種,其中哪一種函數(shù)確定的4月份該產(chǎn)品的產(chǎn)量越接近于1.37萬件,哪種函數(shù)作為模擬函數(shù)就較好,故應(yīng)先確定這兩個函數(shù)的具體解析式.

設(shè)y1f(x)=px2qxr(p,q,r為常數(shù),

p≠0),y2g(x)=abxc,根據(jù)已知有

解得

所以f(x)=-0.05x2+0.35x+0.7,g(x)=-0.8×0.5x+1.4.所以f(4)=1.3,g(4)=1.35.

顯然g(4)更接近于1.37,故選用y=-0.8×0.5x+1.4作為模擬函數(shù)較好.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對角線的交點,GPB的中點.

(1)根據(jù)三視圖,畫出該幾何體的直觀圖.

(2)在直觀圖中,①證明:PD∥平面AGC;

②證明:平面PBD⊥平面AGC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商品上市30天內(nèi)每件的銷售價格元與時間天函數(shù)關(guān)系是

該商品的日銷售量件與時間天函數(shù)關(guān)系是

.(1)求該商品上市第20天的日銷售金額;

(2)求這個商品的日銷售金額的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,判斷函數(shù)的單調(diào)性;

(2)若存在,使得是自然對數(shù)的底數(shù)),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中為常數(shù),).(Ⅰ)求函數(shù)的單調(diào)區(qū)間;(Ⅱ)當(dāng)時,是否存在實數(shù),使得當(dāng)時,不等式恒成立?如果存在,求的取值范圍;如果不存在,請說明理由(其中是自然對數(shù)的底數(shù),).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1是實數(shù)集上的奇函數(shù),求的值;

2用定義證明在實數(shù)集上單調(diào)遞增;

3值域為,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】鹽化某廠決定采用以下方式對某塊鹽池進(jìn)行開采:每天開采的量比上一天減少,10天后總量變?yōu)樵瓉淼囊话,為了維持生態(tài)平衡,剩余總量至少要保留原來的,已知到今天為止,剩余的總量是原來的

(1)求的值;

(2)到今天為止,工廠已經(jīng)開采了幾天?

(3)今后最多還能再開采多少天?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的廣告費支出x(單位:百萬元)與銷售額y(單位:百萬元)之間有如下的對應(yīng)數(shù)據(jù):

x

2

4

5

6

8

y

30

40

60

50

70

1)畫出散點圖;

2)求y關(guān)于x的線性回歸方程。

3)如果廣告費支出為一千萬元,預(yù)測銷售額大約為多少百萬元?

參考公式

用最小二乘法求線性回歸方程系數(shù)公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)對一切 恒成立,求實數(shù)的取值范圍;

(2)當(dāng)時,求函數(shù)在[m,m+3]( m>0)上的最值;

(3)證明:對一切,都有成立.

查看答案和解析>>

同步練習(xí)冊答案