【題目】某公司計(jì)劃在今年內(nèi)同時(shí)出售變頻空調(diào)機(jī)和智能洗衣機(jī),由于這兩種產(chǎn)品的市場(chǎng)需求量非常大,有多少就能銷售多少,因此該公司要根據(jù)實(shí)際情況(如資金、勞動(dòng)力)確定產(chǎn)品的月供應(yīng)量,以使得總利潤(rùn)達(dá)到最大.已知對(duì)這兩種產(chǎn)品有直接限制的因素是資金和勞動(dòng)力,經(jīng)調(diào)查,得到關(guān)于這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:

資金

每臺(tái)產(chǎn)品所需資金(百元)

月資金供應(yīng)量

(百元)

空調(diào)機(jī)

洗衣機(jī)

成本

30

20

300

勞動(dòng)力(工資)

5

10

110

每臺(tái)產(chǎn)品利潤(rùn)

6

8

試問:怎樣確定兩種貨物的月供應(yīng)量,才能使總利潤(rùn)最大?最大利潤(rùn)是多少?

【答案】當(dāng)月供應(yīng)空調(diào)機(jī)4臺(tái),洗衣機(jī)9臺(tái)時(shí),可獲最大利潤(rùn)9600

【解析】設(shè)空調(diào)機(jī)、洗衣機(jī)的月供應(yīng)量分別是,臺(tái),總利潤(rùn)是百元,根據(jù)題意可得線性約束條件為

目標(biāo)函數(shù)為.

作出二元一次不等式組所表示的平面區(qū)域,即可行域如圖所示,

變形為,這是斜率為、隨變化的一平行直線,是直線在軸上的截距,當(dāng)取最大值時(shí),的值最大,當(dāng)然直線要與可行域相交,由圖可得,當(dāng)直線經(jīng)過可行域上的點(diǎn)時(shí),截距最大,即最大.

解方程組的坐標(biāo)為

(百元).

答:當(dāng)月供應(yīng)空調(diào)機(jī)4臺(tái),洗衣機(jī)9臺(tái)時(shí),可獲最大利潤(rùn)9600元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中為實(shí)數(shù)

1是否存在,使得?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由;

2若集合中恰有5個(gè)元素,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義在上的函數(shù),如果存在點(diǎn),對(duì)函數(shù)的圖象上任意點(diǎn),關(guān)于點(diǎn)的對(duì)稱點(diǎn)也在函數(shù)的圖象上,則稱函數(shù)關(guān)于點(diǎn)對(duì)稱,稱為函數(shù)的一個(gè)對(duì)稱點(diǎn),對(duì)于定義在上的函數(shù),可以證明點(diǎn)圖象的一個(gè)對(duì)稱點(diǎn)的充要條件是,

1求函數(shù)圖象的一個(gè)對(duì)稱點(diǎn);

2函數(shù)的圖象是否有對(duì)稱點(diǎn)?若存在則求之,否則說明理由;

3函數(shù)的圖象是否有對(duì)稱點(diǎn)?若存在則求之,否則說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司有30名男職員和20名女職員,公司進(jìn)行了一次全員參與的職業(yè)能力測(cè)試,現(xiàn)隨機(jī)詢問了該公司5名男職員和5名女職員在測(cè)試中的成績(jī)(滿分為30分),可知這5名男職員的測(cè)試成績(jī)分別為16,24,18,

22,20,5名女職員的測(cè)試成績(jī)分別為18,23,23,18,23,則下列說法一定正確的是( )

A. 這種抽樣方法是分層抽樣

B. 這種抽樣方法是系統(tǒng)抽樣

C. 這5名男職員的測(cè)試成績(jī)的方差大于這5名女職員的測(cè)試成績(jī)的方差

D. 該測(cè)試中公司男職員的測(cè)試成績(jī)的平均數(shù)小于女職員的測(cè)試成績(jī)的平均數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

當(dāng)時(shí),求的極值;

若曲線在點(diǎn)處切線的斜率為3,且對(duì)任意都成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男3020),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)

幾何題

代數(shù)題

總計(jì)

男同學(xué)

22

8

30

女同學(xué)

8

12

20

總計(jì)

30

20

50

1)能否據(jù)此判斷有975%的把握認(rèn)為視覺和空間能力與性別有關(guān)?

2)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對(duì)她們的答題情況進(jìn)行全程研究,記甲、乙兩女生被抽到的人數(shù)為X,求X的分布列及數(shù)學(xué)期望EX).

附表及公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,貨輪在海上以35n mile/h的速度沿方位角(從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的水平角)為的方向航行.為了確定船位,在B點(diǎn)處觀測(cè)到燈塔A的方位角為.半小時(shí)后,貨輪到達(dá)C點(diǎn)處,觀測(cè)到燈塔A的方位角為.求此時(shí)貨輪與燈塔之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若對(duì),不等式恒成立,求實(shí)數(shù)的取值范圍;

(2)記,那么當(dāng)時(shí),是否存在區(qū)間使得函數(shù)在區(qū)間上的值域恰好為?若存在,請(qǐng)求出區(qū)間;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一座大橋既是交通擁擠地段,又是事故多發(fā)地段,為了保證安全,交通部門規(guī)定:大橋上的車距與車速和車長(zhǎng)的關(guān)系滿足為正的常數(shù)).假定車身長(zhǎng)為,當(dāng)車速為時(shí),車距為個(gè)車身長(zhǎng).

(1)寫出車距關(guān)于車速的函數(shù)關(guān)系式;

(2)應(yīng)規(guī)定怎樣的車速,才能使大橋上每小時(shí)通過的車輛最多?

查看答案和解析>>

同步練習(xí)冊(cè)答案