【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=AC=5,BB1=BC=6,D,E分別是AA1和B1C的中點(diǎn)
(1)求證:DE∥平面ABC;
(2)求三棱錐E﹣BCD的體積.

【答案】
(1)證明:取BC中點(diǎn)G,連接AG,EG,

因?yàn)镋是B1C的中點(diǎn),所以EG∥BB1

由直棱柱知,AA1∥BB1,AA1=BB1,而D是AA1的中點(diǎn),

所以EG∥AD,EG=AD

所以四邊形EGAD是平行四邊形,

所以ED∥AG,又DE平面ABC,AG平面ABC

所以DE∥平面ABC.


(2)解:因?yàn)锳D∥BB1,所以AD∥平面BCE,

所以VEBCD=VDBCE=VABCE=VEABC,

由(1)知,DE∥平面ABC,

所以 .(14分)


【解析】(1)取BC中點(diǎn)G,連接AG,EG,通過證明四邊形EGAD是平行四邊形,推出ED∥AG,然后證明DE∥平面ABC.(2)證明AD∥平面BCE,利用VEBCD=VDBCE=VABCE=VEABC,然后求解幾何體的體積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】連鎖經(jīng)營(yíng)公司所屬5個(gè)零售店某月的銷售額利潤(rùn)資料如表:

商品名稱

A

B

C

D

E

銷售額x/千萬元

3

5

6

7

9

利潤(rùn)額y/百萬元

2

3

3

4

5

(參考公式: = = = x)
(1)畫出銷售額和利潤(rùn)額的散點(diǎn)圖
(2)若銷售額和利潤(rùn)額具有相關(guān)關(guān)系,試計(jì)算利潤(rùn)額y對(duì)銷售額x的回歸直線方程.
(3)估計(jì)要達(dá)到1000萬元的利潤(rùn)額,銷售額約為多少萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某航模興趣小組的同學(xué),為了測(cè)定在湖面上航模航行的速度,采用如下辦法:在岸邊設(shè)置兩個(gè)觀測(cè)點(diǎn)A,B(假設(shè)A,B,C,D在同一水平面上),且AB=80米,當(dāng)航模在C 處時(shí),測(cè)得∠ABC=
105°和∠BAC=30°,經(jīng)過20秒后,航模直線航行到D 處,測(cè)得∠BAD=90°和∠ABD=45°.請(qǐng)你根據(jù)以上條件求出航模的速度.(答案保留根號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: 過點(diǎn)A(2,3),且F(2,0)為其右焦點(diǎn).
(1)求橢圓C的方程;
(2)是否存在于行于OA的直線l,使得直線l與橢圓C有公共點(diǎn),且直線OA與l的距離等于 ?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣ax﹣1(a∈R).
(1)若對(duì)任意實(shí)數(shù)x,f(x)<0恒成立,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a>0時(shí),解關(guān)于x的不等式f(x)<2x﹣3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列選項(xiàng)中,說法正確的是(
A.已知命題p和q,若“p∨q”為假命題,則命題p和q中必一真一假
B.命題“?c∈R,方程2x2+y2=c表示橢圓”的否定是“?c∈R,方程2x2+y2=c不表示橢圓”
C.命題“若k<9,則方程“ + =1表示雙曲線”是假命題
D.命題“在△ABC中,若sinA< ,則A< ”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD= .用向量法解決下列問題:

(1)若AC的中點(diǎn)為E,求A1C與DE所成的角;
(2)求二面角B1﹣AC﹣D1(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y= 的定義域是(
A.(1,2]
B.(1,2)
C.(2,+∞)
D.(﹣∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市居民自來水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水不超過5噸時(shí),每噸為2.6元,當(dāng)用水超過5噸時(shí),超過部分每噸4元,某月甲、乙兩戶共交水費(fèi)y元,已知甲、乙兩戶該月用水量分別為5x,3x噸.
(1)求y關(guān)于x的函數(shù);
(2)若甲、乙兩戶該月共交水費(fèi)34.7元,分別求甲、乙兩戶該月的用水量和水費(fèi).

查看答案和解析>>

同步練習(xí)冊(cè)答案