【題目】如圖,在四棱錐中,平面,,,且,.
(1)證明:.
(2)若,試在棱上確定一點(diǎn),使與平面所成角的正弦值為.
【答案】(1)證明見解析;(2)點(diǎn)為棱的中點(diǎn)
【解析】
(1)在同一平面內(nèi)用數(shù)據(jù)說話證明 ,利用平面,證明,
從而得證平面,得到.
(1)取的中點(diǎn),以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,使用空間向量求及平面的一個法向量,利用夾角公式求解即可.
(1)證明:∵,且,∴,
∴,又∵,∴,即.
∵平面,平面,∴,
又∵,∴平面,
∵平面,∴.
(2)解:取的中點(diǎn),以為坐標(biāo)原點(diǎn),,,所在的直線分別為軸,軸,軸建立空間直角坐標(biāo)系.如圖所示.
設(shè),則,,,,,
則,,,
設(shè),
則.
由(1)可知,平面,∴為平面的一個法向量.
設(shè)與平面所成的角為.
則,
整理得,解得或(舍),
∴點(diǎn)為棱的中點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足奇數(shù)項(xiàng)成等差,公差為,偶數(shù)項(xiàng)成等比,公比為,且數(shù)列的前項(xiàng)和為,,.
若,.
①求數(shù)列的通項(xiàng)公式;
②若,求正整數(shù)的值;
若,,對任意給定的,是否存在實(shí)數(shù),使得對任意恒成立?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的實(shí)系數(shù)方程和有四個不同的根,若這四個根在復(fù)平面上對應(yīng)的點(diǎn)共圓,則m的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)院對治療支氣管肺炎的兩種方案,進(jìn)行比較研究,將志愿者分為兩組,分別采用方案和方案進(jìn)行治療,統(tǒng)計結(jié)果如下:
有效 | 無效 | 合計 | |
使用方案組 | 96 | 120 | |
使用方案組 | 72 | ||
合計 | 32 |
(1)完成上述列聯(lián)表,并比較兩種治療方案有效的頻率;
(2)能否在犯錯誤的概率不超過0.05的前提下認(rèn)為治療是否有效與方案選擇有關(guān)?
附:,其中.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線上一點(diǎn)作直線交拋物線E于另一點(diǎn)N.
(1)若直線MN的斜率為1,求線段的長.
(2)不過點(diǎn)M的動直線l交拋物線E于A,B兩點(diǎn),且以AB為直徑的圓經(jīng)過點(diǎn)M,問動直線l是否恒過定點(diǎn).如果有求定點(diǎn)坐標(biāo),如果沒有請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,極點(diǎn)為,一條封閉的曲線由四段曲線組成:,,,.
(1)求該封閉曲線所圍成的圖形面積;
(2)若直線:與曲線恰有3個公共點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知橢圓的離心率為,點(diǎn)在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過坐標(biāo)原點(diǎn)的直線交C于P,Q兩點(diǎn),點(diǎn)P在第一象限,軸,垂足為E,連結(jié)QE并延長交C于點(diǎn)G.
①求證:是直角三角形;
②求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線和曲線的直角坐標(biāo)方程;
(2)若點(diǎn)坐標(biāo)為,直線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com