【題目】已知四邊形ABCD內(nèi)接于圓O

(1)若AB=2,BC=6,CD=4,AC=8,求BD

(2)若AC=,BC=+1,∠ADB=,求AD2+DC2的取值范圍

【答案】(1)BD=.(2)[ ].

【解析】試題分析:(1)由四點共圓,所以 ,則在 中,由余弦定理得

= ,可求,同理可求;

(2)由題∠ADB=,可得∠ACB=

中由余弦定理得。由余弦定理可得cos∠ABC==

所以∠ABC=,∠ADC=

C中,由正弦定理得===2

所以 ,則 整理化簡,由輔助角公式可求 的取值范圍

試題解析:(1)ABCD四點共圓,所以∠ABC+∠ADC=π,∠BAD+∠BCD=π

在△ABC和△ADC中,由余弦定理得

cos∠ABC===-cos∠ADC

可求得=4

同理,在△ABC和△ADC中有

cos∠BAD===-cos∠BCD

可求得BD=.

(2)∠ADB=,∴∠ACB=

△ABC中由余弦定理得,AB2=AC2+BC2-2AC·BCcos

所以AB=2

cos∠ABC====

所以∠ABC=,∠ADC=

在△ADC中,由正弦定理得===2

所以AD=2sin∠ACD,CD=2sin∠CAD

令∠ACD=θ,則∠CAD=

AD2+DC2=(2sinθ)2+[2sin(-θ)]2

=8(sin2θ+cos2θ-sinθcosθ)

=8(-+)

=8-(2cos2θ+2sin2θ)

=8-sin(2θ+)

θ∈(0),2θ+∈(,)

所以AD2+DC2∈[].

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的一段圖象如圖所示:將的圖象向右平移)個單位,可得到函數(shù)的圖象,且圖象關(guān)于原點對稱.(1)求的值.

(2)求 的最小值,并寫出的表達(dá)式.

(3)設(shè)t>0,關(guān)于x的函數(shù)在區(qū)間上最小值為-2,求t的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知O的半徑是1,點C在直徑AB的延長線上,BC=1,點P是O上半圓上的一個動點,以PC為邊作等邊三角形PCD,且點D與圓心分別在PC的兩側(cè)

(1)若∠POB=θ,試將四邊形OPDC的面積y表示為關(guān)于θ的函數(shù);

(2)求四邊形OPDC面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)我們把一系列向量按次序排成一列,稱之為向量列,記作,已知向量列滿足:,

(1)證明:數(shù)列是等比數(shù)列;

(2)設(shè)表示向量間的夾角,若,對于任意正整數(shù),不等式恒成立,求實數(shù)的范圍

(3)設(shè),問數(shù)列中是否存在最小項?若存在,求出最小項;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,邊a、b、c分別是角A、B、C的對邊,且滿足bcosC=(3a-c)cosB

(1)求cosB

(2)若△ABC的面積為4,b=4,求△ABC的周長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,過點P(2,1)的直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ=2cosθ,已知直線l與曲線C交于A、B兩點.
(1)求曲線C的直角坐標(biāo)方程;
(2)求|PA||PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某公園有三條觀光大道AB,BC,AC圍成直角三角形,其中直角邊BC=200m,斜邊AB=400m,現(xiàn)有甲、乙、丙三位小朋友分別在AB,BC,AC大道上嬉戲,所在位置分別記為點D,E,F(xiàn).

(1)若甲、乙都以每分鐘100m的速度從點B出發(fā)在各自的大道上奔走,到大道的另一端時即停,乙比甲遲2分鐘出發(fā),當(dāng)乙出發(fā)1分鐘后,求此時甲乙兩人之間的距離;
(2)設(shè)∠CEF=θ,乙丙之間的距離是甲乙之間距離的2倍,且∠DEF= ,請將甲乙之間的距離y表示為θ的函數(shù),并求甲乙之間的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=loga(x+3)﹣1(a>0且a≠1)的圖象恒過定點A,若點A在mx+ny+2=0上,其中mn>0,則 的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是由正整數(shù)構(gòu)成的數(shù)表,用表示第行第個數(shù)(). 此表中,每行中除首尾兩數(shù)外,其他各數(shù)分別等于其“肩膀”上的兩數(shù)之和.

(1)寫出數(shù)表的第6行(從左至右依次列出);

(2)設(shè)第行的第二個數(shù)為,求;

(3)令,記為數(shù)列項和,求的最大值,并求此時的值.

查看答案和解析>>

同步練習(xí)冊答案