【題目】已知數(shù)列的各項(xiàng)均為整數(shù),其前n項(xiàng)和為.規(guī)定:若數(shù)列滿足前r項(xiàng)依次成公差為1的等差數(shù)列,從第項(xiàng)起往后依次成公比為2的等比數(shù)列,則稱數(shù)列為“r關(guān)聯(lián)數(shù)列”.

(1)若數(shù)列為“6關(guān)聯(lián)數(shù)列”,求數(shù)列的通項(xiàng)公式;

(2)在(1)的條件下,求出,并證明:對(duì)任意,;

3)若數(shù)列為“6關(guān)聯(lián)數(shù)列”,當(dāng)時(shí),之間插入n個(gè)數(shù),使這個(gè)數(shù)組成一個(gè)公差為的等差數(shù)列,求,并探究在數(shù)列中是否存在三項(xiàng),,其中m,k,p成等差數(shù)列)成等比數(shù)列?若存在,求出這樣的三項(xiàng);若不存在,說明理由.

【答案】(1)

(2),證明見解析

(3),不存在,理由見解析

【解析】

1)根據(jù)題意得到,,且.解得即可求出的通項(xiàng)公式.

(2)由(1)得,利用換元法證明數(shù)列的最小項(xiàng)為,即可證明對(duì)任意.

3)由(1)可知,當(dāng)時(shí),,由此可得出.假設(shè)在數(shù)列中存在三項(xiàng),(其中,成等差數(shù)列)成等比數(shù)列,則,推導(dǎo)出故,這與題設(shè)矛盾,所以在數(shù)列中不存在三項(xiàng),(其中,成等差數(shù)列)成等比數(shù)列.

(1)∵為“6關(guān)聯(lián)數(shù)列”,

前6項(xiàng)為等差數(shù)列,從第5項(xiàng)起為等比數(shù)列.

,且.

,解得.

.

(2)由(1)得.

,

,

,

可見數(shù)列的最小項(xiàng)為.

由列舉法知:當(dāng)時(shí),;

當(dāng)時(shí),),

設(shè),則,

(3)由(1)可知,當(dāng)時(shí),,

因?yàn)椋?/span>,.

故:.

假設(shè)在數(shù)列中存在三項(xiàng),(其中,成等差數(shù)列)成等比數(shù)列,

則:,即:,

(*)

因?yàn)?/span>,,成等差數(shù)列,所以

(*)式可以化簡為,

即:,故,這與題設(shè)矛盾.

所以在數(shù)列中不存在三項(xiàng),,(其中,成等差數(shù)列)成等比數(shù)列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列,為其前項(xiàng)的和,滿足.

1)求數(shù)列的通項(xiàng)公式;

2)設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,求證:當(dāng),時(shí);

3)已知當(dāng),且時(shí)有,其中,求滿足的所有的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題:,為異面直線,平面過直線且與直線平行,則直線與平面的距離等于異面直線,之間的距離為真命題.根據(jù)上述命題,若,為異面直線,且它們之間的距離為,則空間中與,均異面且距離也均為的直線的條數(shù)為(

A.0B.1C.多于1條,但為有限條D.無數(shù)多條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于由有限個(gè)自然數(shù)組成的集合A,定義集合S(A)={a+b|a∈A,b∈A},記集合S(A)的元素個(gè)數(shù)為d(S(A)).定義變換T,變換T將集合A變換為集合T(A)=A∪S(A).

(1)若A={0,1,2},求S(A),T(A);

(2)若集合A有n個(gè)元素,證明:“d(S(A))=2n-1”的充要條件是“集合A中的所有元素能組成公差不為0的等差數(shù)列”;

(3)若A{1,2,3,4,5,6,7,8}且{1,2,3,…,25,26}T(T(A)),求元素個(gè)數(shù)最少的集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20/千米時(shí),車流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).

1)當(dāng)0≤x≤200時(shí),求函數(shù)vx)的表達(dá)式;

2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/小時(shí))fx=xvx)可以達(dá)到最大,并求出最大值.(精確到1/小時(shí)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),且經(jīng)過點(diǎn),它的一個(gè)焦點(diǎn)與拋物線E的焦點(diǎn)重合,斜率為k的直線l交拋物線EA、B兩點(diǎn),交橢圓C、D兩點(diǎn).

(1)求橢圓的方程;

(2)直線l經(jīng)過點(diǎn),設(shè)點(diǎn),且的面積為,求k的值;

(3)若直線l過點(diǎn),設(shè)直線,的斜率分別為,,且,,成等差數(shù)列,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了普及環(huán)保知識(shí),增強(qiáng)學(xué)生的環(huán)保意識(shí),在全校組織了一次有關(guān)環(huán)保知識(shí)的競賽,經(jīng)過初賽、復(fù)賽,甲、乙兩個(gè)代表隊(duì)(每隊(duì)人)進(jìn)入了決賽,規(guī)定每人回答一個(gè)問題,答對(duì)為本隊(duì)贏得分,答錯(cuò)得分,假設(shè)甲隊(duì)中每人答對(duì)的概率均為,乙隊(duì)中人答對(duì)的概率分別為,且各人回答正確與否相互之間沒有影響,用表示乙隊(duì)的總得分.

(1)求的分布列;

(2)求甲、乙兩隊(duì)總得分之和等于分且甲隊(duì)獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題中,真命題是(  )

A.和兩條異面直線都相交的兩條直線是異面直線

B.和兩條異面直線都相交于不同點(diǎn)的兩條直線是異面直線

C.和兩條異面直線都垂直的直線是異面直線的公垂線

D.、是異面直線,、是異面直線,則是異面直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若不等式的解集為,求a的值;

(2)在(1)的條件下,若存在,使,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案