精英家教網 > 高中數學 > 題目詳情

【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,已知點M的直角坐標為(1,0),若直線l的極坐標方程為 ρcos(θ+ )﹣1=0,曲線C的參數方程是 (t為參數).
(1)求直線l和曲線C的普通方程;
(2)設直線l與曲線C交于A,B兩點,求

【答案】
(1)解:因為 ,

所以ρcosθ﹣ρsinθ﹣1=0

由x=ρcosθ,y=ρsinθ,

得x﹣y﹣1=0

因為 消去t得y2=4x,

所以直線l和曲線C的普通方程分別為x﹣y﹣1=0和y2=4x


(2)解:點M的直角坐標為(1,0),點M在直線l上,

設直線l的參數方程: (t為參數),A,B對應的參數為t1,t2

,

= = = =1


【解析】(1)直線l的極坐標方程化為ρcosθ﹣ρsinθ﹣1=0,由x=ρcosθ,y=ρsinθ,能求出直線l的普通方程;曲線C的參數方程消去參數能求出曲線C的普通方程.(2)點M的直角坐標為(1,0),點M在直線l上,求出直線l的參數方程,得到 ,由此利用韋達定理能求出 的值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓C: =1 (a>b>0)的短軸長為2,過上頂點E和右焦點F的直線與圓M:x2+y2﹣4x﹣2y+4=0相切.
(I)求橢圓C的標準方程;
(Ⅱ)若直線l過點(1,0),且與橢圓C交于點A,B,則在x軸上是否存在一點T(t,0)(t≠0),使得不論直線l的斜率如何變化,總有∠OTA=∠OTB (其中O為坐標原點),若存在,求出 t的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國古代數學著作《九章算術》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤,斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現(xiàn)有一根金箠,長五尺,一頭粗,一頭細,在粗的一端截下1尺,重4斤;在細的一端截下1尺,重2斤;問依次每一尺各重多少斤?”根據上題的已知條件,若金箠由粗到細是均勻變化的,問第二尺與第四尺的重量之和為(
A.6 斤
B.9 斤
C.9.5斤
D.12 斤

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)經過點( ,1),且離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)設M、N是橢圓C上的點,直線OM與ON(O為坐標原點)的斜率之積為﹣ ,若動點P滿足 ,試探究,是否存在兩個定點F1 , F2 , 使得|PF1|+|PF2|為定值?若存在,求F1 , F2的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)= sin2x+sinxcosx﹣
(1)求f(x)的單調增區(qū)間;
(2)已知△ABC中,角A,B,C的對邊分別為a,b,c,若A為銳角且f(A)= ,b+c=4,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】點A,B,C,D在同一個球的球面上,AB=BC=1,∠ABC=120°,若四面體ABCD體積的最大值為 ,則這個球的表面積為(
A.
B.4π
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C: (θ為參數),直線l1:kx﹣y+k=0,l2:cosθ﹣2sinθ=
(Ⅰ)寫出曲線C和直線l2的普通方程;
(Ⅱ)l1與C交于不同兩點M,N,MN的中點為P,l1與l2的交點為Q,l1恒過點A,求|AP||AQ|

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】第31屆夏季奧林匹克運動會將于2016年8月5日﹣21日在巴西里約熱內盧舉行.下表是近五屆奧運會中國代表團和俄羅斯代表團獲得的金牌數的統(tǒng)計數據(單位:枚).

第30屆倫敦

第29屆北京

第28屆雅典

第27屆悉尼

第26屆亞特蘭大

中國

38

51

32

28

16

俄羅斯

24

23

27

32

26

(Ⅰ)根據表格中兩組數據完成近五屆奧運會兩國代表團獲得的金牌數的莖葉圖,并通過莖葉圖比較兩國代表團獲得的金牌數的平均值及分散程度(不要求計算出具體數值,給出結論即可);
(Ⅱ)甲、乙、丙三人競猜今年中國代表團和俄羅斯代表團中的哪一個獲得的金牌數多(假設兩國代表團獲得的金牌數不會相等),規(guī)定甲、乙、丙必須在兩個代表團中選一個,已知甲、乙猜中國代表團的概率都為 ,丙猜中國代表團的概率為 ,三人各自猜哪個代表團的結果互不影響.現(xiàn)讓甲、乙、丙各猜一次,設三人中猜中國代表團的人數為X,求X的分布列及數學期望EX.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數
(1)若 ,求函數 處的切線方程
(2)設函數 ,求 的單調區(qū)間.
(3)若存在 ,使得 成立,求 的取值范圍。

查看答案和解析>>

同步練習冊答案