【題目】某中學從高三男生中隨機抽取100名學生,將他們的身高數(shù)據(jù)進行整理,得到下側(cè)的頻率分布表.

組號

分組

頻率

1

[160,165)

0.05

2

0.35

3

0.3

4

0.2

5

0.1

合計

1.00

Ⅰ)為了能對學生的體能做進一步了解,該校決定在第3,4,5組中用分層抽樣的方法抽取6名學生進行體能測試,問第3,4,5組每組各應抽取多少名學生進行測試;

Ⅱ)在(Ⅰ)的前提下,學校決定在6名學生中隨機抽取2名學生進行引體向上測試,求第3組中至少有一名學生被抽中的概率;

試估計該中學高三年級男生身高的中位數(shù)位于第幾組中,并說明理由.

【答案】(1)3人,2人,1.(2)0.8.(3)3

【解析】分析:由分層抽樣方法可得第組:人;第組:人;第組:;利用列舉法可得個人抽取兩人共有中不同的結(jié)果,其中第組的兩位同學至少有一位同學被選中的情況有種,利用古典概型概率公式可得結(jié)果;(由前兩組頻率和為,中位數(shù)可得在第.

詳解(Ⅰ)因為第3,4,5組共有60名學生,所以利用分層抽樣在60名學生中抽取6名學生,每組學生人數(shù)分別為:

3組:=3人;第4組:=2人;第5組:=1.

所以第3,4,5組分別抽取3人,2人,1.

Ⅱ)設第33位同學為A1,A2,A3,第42位同學為B1,B2,第51位同學為C1,則從6位同學中抽兩位同學的情況分別為:

(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1).共有15.

其中第4組的兩位同學至少有一位同學被選中的情況分別為:

(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),共有12種可能.

所以,第4組中至少有一名學生被抽中的概率為0.8.

答:第4組中至少有一名學生被抽中的概率為0.8.

Ⅲ)第3

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知sin2
(Ⅰ) 求角A的大;
(Ⅱ) 若b+c=2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經(jīng)過兩點,且圓心在直線.

)求圓的標準方程;

)設直線經(jīng)過點,且與圓相交所得弦長為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x+1|.
(Ⅰ) 解不等式f(x+8)≥10﹣f(x);
(Ⅱ) 若|x|>1,|y|<1,求證:f(y)<|x|f( ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2015年一交警統(tǒng)計了某路段過往車輛的車速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;

(3)試根據(jù)(2)求出的線性回歸方程,預測在2016年該路段路況及相關安全設施等不變的情況下,車速達到110時,可能發(fā)生的交通事故次數(shù).

(附:,,其中為樣本平均值)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市電視臺為了提高收視率而舉辦有獎問答活動,隨機對該市15~65歲的人群抽樣了 人,回答問題統(tǒng)計結(jié)果及頻率分布直方圖如圖表所示.

(1)分別求出 的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應各抽取多少人?
(3)在(2)的前提下,電視臺決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求所抽取的人中第2組至少有1人獲得幸運獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= sinωx﹣ cosωx(ω<0),若y=f(x+ )的圖象與y=f(x﹣ )的圖象重合,記ω的最大值為ω0 , 函數(shù)g(x)=cos(ω0x﹣ )的單調(diào)遞增區(qū)間為(
A.[﹣ π+ ,﹣ + ](k∈Z)
B.[﹣ + , + ](k∈Z)
C.[﹣ π+2kπ,﹣ +2kπ](k∈Z)
D.[﹣ +2kπ,﹣ +2kπ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn , 且Sn滿足n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),則S1+S2+…+S2017=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義表示不超過的最大整數(shù)為,記,二次函數(shù)與函數(shù)上有兩個不同的交點,則的取值范圍是( )

A. B. C. D. 以上均不正確

查看答案和解析>>

同步練習冊答案