【題目】已知函數(shù).
(1)已知直線:,:若直線與關(guān)于對稱,又函數(shù)在處的切線與平行,求實數(shù)的值;
(2)若,證明:當時,恒成立.
【答案】(1);(2)見解析.
【解析】
(1)首先利用直線一定過與的交點,再利用直線上任意點關(guān)于對稱的點都在直線上,之后應用兩點是式求得直線的方程,求得其斜率,即為函數(shù)的值,從而求得結(jié)果;
(2)利用導數(shù)研究函數(shù)的單調(diào)性,從而證得結(jié)果.
(1)由解得
必過與的交點.
在上取點,易得點關(guān)于對稱的點為,
即為直線,所以的方程為,
即,其斜率為.
又,
所以函數(shù)在處的切線的斜率為,
由題意可得,解得.
(2)法一:因為
所以,
①若,.∴在上單調(diào)遞減.
②若,當,或時,時,
當時,.
∴在,上單調(diào)遞減,在上單調(diào)遞增.
綜上,當時,函數(shù)在上單調(diào)遞減,
所以,又
所以,當時,恒成立.
法二:要證,即證,
因為,即證.
∵,∴.
設,則.
設,則,
在上,恒成立.
∴在上單調(diào)遞增.
又∵,∴時,,
所以在上單調(diào)遞增,
∴,∴,,
所以,
所以在上恒成立.
即當時,恒成立.
綜上,當時,恒成立.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,己知圓和雙曲線,記與軸正半軸、軸負半軸的公共點分別為、,又記與在第一、第四象限的公共點分別為、.
(1)若,且恰為的左焦點,求的兩條漸近線的方程;
(2)若,且,求實數(shù)的值;
(3)若恰為的左焦點,求證:在軸上不存在這樣的點,使得.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的右頂點為A,上頂點為B.已知橢圓的離心率為,.
(1)求橢圓的方程;
(2)設直線與橢圓交于,兩點,與直線交于點M,且點P,M均在第四象限.若的面積是面積的2倍,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知在長方體中,,,,點為上的一個動點,平面與棱交于點,給出下列命題:
①四棱錐的體積為20;
②存在唯一的點,使截面四邊形的周長取得最小值;
③當點不與,重合時,在棱上均存在點,使得平面;
④存在唯一的點,使得平面,且.
其中正確的命題是_____(填寫所有正確的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知矩形EFMN,,,以EF的中點O為原點,建立如圖的平面直角坐標系,若橢圓以E,F為焦點,且經(jīng)過M,N兩點.
(1)求橢圓的方程;
(2)直線與相交于A,B兩點,在y軸上是否存在點C,使得△ABC為正三角形,若存在,求出l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過曲線C1: (a>0,b>0)的左焦點F1作曲線C2:x2+y2=a2的切線,設切點為M,直線F1M交曲線C3:y2=2px(p>0)于點N,其中曲線C1與C3有一個共同的焦點,若|MF1|=|MN|,則曲線C1的離心率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著經(jīng)濟的發(fā)展,城市空氣質(zhì)量也越來越引起了人民的關(guān)注,如圖是我國某大城市2018年1月至8月份的空氣質(zhì)量檢測結(jié)果,圖中一、二、三、四級是空氣質(zhì)量等級,一級空氣質(zhì)量最好,一級和二級都是空氣質(zhì)量合格,下面說法錯誤的是( )
A.6月的空氣質(zhì)量最差
B.8月是空氣質(zhì)量最好的一個月
C.第二季度與第一季度相比,空氣質(zhì)量合格天數(shù)的比重下降了
D.1月至8月空氣質(zhì)量合格天數(shù)超過20天的月份有5個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐V﹣ABCD中,底面ABCD是菱形,對角線AC與BD交于點O,VO⊥平面ABCD,E是棱VC的中點.
(1)求證:VA∥平面BDE;
(2)求證:平面VAC⊥平面BDE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com