精英家教網 > 高中數學 > 題目詳情

【題目】已知在圓x2+y2﹣4x+2y=0內,過點E(1,0)的最長弦和最短弦分別是AC和BD,則四邊形ABCD的面積為(
A.
B.6
C.
D.2

【答案】D
【解析】解:圓x2+y2﹣4x+2y=0即(x﹣2)2+(y+1)2=5,圓心M(2,﹣1),半徑r= , 最長弦AC為圓的直徑為2 ,
∵BD為最短弦
∴AC與BD相垂直,ME=d= ,
∴BD=2BE=2 =2 ,
∵S四邊形ABCD=SABD+SBDC= BD×EA+ ×BD×EC
= ×BD×(EA+EC)= ×BD×AC= =2
故選:D
圓x2+y2﹣4x+2y=0即(x﹣2)2+(y+1)2=5,圓心M(2,﹣1),半徑r= ,最長弦AC為圓的直徑.BD為最短弦,AC與BD相垂直,求出BD,由此能求出四邊形ABCD的面積.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數(12分)

(1)若函數上為增函數,求實數的取值范圍;

(2)當時,求上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】國際奧委會于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運會舉辦地,目前德國漢堡,美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出,某機構為調查我國公民對申辦奧運會的態(tài)度,選了100位居民調查結果統(tǒng)計如下:

支持

不支持

合計

年齡不大于50歲

_______

_______

80

年齡大于50歲

10

_______

_______

合計

_______

70

100

(1)根據已知數據,把表格填寫完整;

(2)是否有95%的把握認為年齡與支持申辦奧運有關?

附表:,

0.100

0.050

0.025

0.010

2.706

3.814

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數g(x)= +lnx在[1,+∞)上為增函數,且θ∈(0,π),f(x)=mx﹣ ﹣lnx(m∈R). (Ⅰ)求θ的值;
(Ⅱ)若f(x)﹣g(x)在[1,+∞)上為單調函數,求m的取值范圍;
(Ⅲ)設h(x)= ,若在[1,e]上至少存在一個x0 , 使得f(x0)﹣g(x0)>h(x0)成立,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】觀察下列方程,并回答問題:

;②;③;④;…

(1)請你根據這列方程的特點寫出第個方程;

(2)直接寫出第2009個方程的根;

(3)說出這列方程的根的一個共同特點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地空氣中出現污染,須噴灑一定量的去污劑進行處理.據測算,每噴灑1個單位的去污劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數關系式近似為,若多次噴灑,則某一時刻空氣中的去污劑濃度為每次投放的去污劑在相應時刻所釋放的濃度之和.由實驗知,當空氣中去污劑的濃度不低于4(毫克/立方米)時,它才能起到去污作用.

(Ⅰ)若一次噴灑4個單位的去污劑,則去污時間可達幾天?

(Ⅱ)若第一次噴灑2個單位的去污劑,6天后再噴灑 個單位的去污劑,要使接下來的4天中能夠持續(xù)有效去污,試求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正項等比數列{an}前n項和為Sn , 且滿足S3= ,a6 , 3a5 , a7成等差數列. (Ⅰ)求數列{an}的通項公式;
(Ⅱ)設數列bn= ,且數列bn的前n項的和Tn , 試比較Tn 的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(Ⅰ)當時,求函數 的單調區(qū)間;

(Ⅱ)當時,不等式恒成立,求實數的取值范圍.

(Ⅲ)求證: 是自然對數的底數).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,P為⊙O外一點,PC交⊙O于F,C,PA切⊙O于A,B為線段PA的中點,BC交⊙O于D,線段PD的延長線與⊙O交于E,連接FE.求證:
(Ⅰ)△PBD∽△CBP;
(Ⅱ)AP∥FE.

查看答案和解析>>

同步練習冊答案