【題目】如圖:已知四棱錐PABCD的底面ABCD是平行四邊形,PA面ABCD,M是AD的中點(diǎn),N是PC的中點(diǎn).

(1)求證:MN面PAB;

(2)若平面PMC面PAD,求證:CMAD.

【答案】(1)詳見(jiàn)解析(2)詳見(jiàn)解析

【解析】

試題分析:(1)取BC中點(diǎn)E,連結(jié)ME、NE,由已知推導(dǎo)出平面PAB平面MNE,由此能證明MN平面PAB.

2)利用面面垂直的性質(zhì),由平面PMC平面PAD,平面ABCD平面PAD,可證CM平面PAD,由AD平面PAD,即可證明CMAD

試題解析:(1)取PB的中點(diǎn)E,連接EA,EN,

PBC中,EN//BC且

,AD//BC,AD=BC

所以EN//AM,,EN=AM.

所以四邊形ENMA是平行四邊形,

所以MN//AE. ,,

所以MN//平面PAB.

(2)過(guò)點(diǎn)A作PM的垂線,垂足為H,

因?yàn)槠矫鍼MC平面PAD,平面PMC平面PAD=PM,AHPM,

所以AH平面PMC,又

所以AHCM.

因?yàn)镻A平面ABCD,所以PACM.

因?yàn)镻AAH=A,

所以CM平面PAD.

所以CMAD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若某校研究性學(xué)習(xí)小組共6人,計(jì)劃同時(shí)參觀科普展,該科普展共有甲,乙,丙三個(gè)展廳,6人各自隨機(jī)地確定參觀順序,在每個(gè)展廳參觀一小時(shí)后去其他展廳,所有展廳參觀結(jié)束后集合返回,設(shè)事件A為:在參觀的第一小時(shí)時(shí)間內(nèi),甲,乙,丙三個(gè)展廳恰好分別有該小組的2個(gè)人;事件B為:在參觀的第二個(gè)小時(shí)時(shí)間內(nèi),該小組在甲展廳人數(shù)恰好為2人,則 ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=x2+2xtanθ-1,x∈[-1,],其中θ∈(-,).

(1)當(dāng)θ=-時(shí),求函數(shù)f(x)的最大值;

(2)求θ的取值范圍,使yf(x)在區(qū)間[-1,]上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若,不等式有且只有兩個(gè)整數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,由A,B兩個(gè)元件分別組成串聯(lián)電路(圖(1))和并聯(lián)電路(圖(2)),觀察兩個(gè)元件正常或失效的情況.

1)寫(xiě)出試驗(yàn)的樣本空間;

2)對(duì)串聯(lián)電路,寫(xiě)出事件M=“電路是通路”包含的樣本點(diǎn);

3)對(duì)并聯(lián)電路,寫(xiě)出事件N=“電路是斷路”包含的樣本點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中超足球隊(duì)的后衛(wèi)線上一共有7名球員,其中3人只能打中后衛(wèi),2人只能打邊后衛(wèi),2人既能打中后衛(wèi)又能打邊后衛(wèi),主教練決定選派4名后衛(wèi)上場(chǎng)比賽,假設(shè)可以隨機(jī)選派球員.

(1)在選派的4人中至少有2人能打邊后衛(wèi)的概率;

(2)在選派的4人中既能打中后衛(wèi)又能打邊后衛(wèi)的人數(shù)的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)aR).

1)討論yfx)的單調(diào)性;

2)若函數(shù)fx)有兩個(gè)不同零點(diǎn)x1,x2,求實(shí)數(shù)a的范圍并證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖甲中的兩條曲線分別表示某理想狀態(tài)下捕食者和被捕食者數(shù)量隨時(shí)間的變化規(guī)律、對(duì)捕食者和被捕食者數(shù)量之間的關(guān)系描述錯(cuò)誤的是( )

A. 捕食者和被捕食者數(shù)量與時(shí)間以年為周期

B. 由圖可知,當(dāng)捕食者數(shù)量增多的過(guò)程中,被捕食者數(shù)量先增多后減少

C. 捕食者和被捕食者數(shù)量之間的關(guān)系可以用圖1乙描述

D. 捕食者的數(shù)量在第年和年之間數(shù)量在急速減少

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】狄利克雷函數(shù)是高等數(shù)學(xué)中的一個(gè)典型函數(shù),若則稱(chēng)為狄利克雷函數(shù).對(duì)于狄利克雷函數(shù),給出下面4個(gè)命題:①對(duì)任意,都有;②對(duì)任意,都有;③對(duì)任意,都有, ;④對(duì)任意,都有.其中所有真命題的序號(hào)是

A. ①④ B. ②③ C. ①②③ D. ①③④

查看答案和解析>>

同步練習(xí)冊(cè)答案