【題目】已知函數(shù)(為自然對數(shù)的底,,為常數(shù)且)
(1)當時,討論函數(shù)在區(qū)間上的單調性;
(2)當時,若對任意的,恒成立,求實數(shù)的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)時,求得,當時,恒有.當時,由,得,由,得,再由和分類討論,能求出結果.
(2)當時,求得,推導出,再由和進行分類討論經(jīng),利用導數(shù)的性質能求出足條件的實數(shù)的取值范圍.
(1)由題知時,,, ,
①當時,得函數(shù)在上單調遞減;
②當時,由,得,由,得,
Ⅰ.當時,函數(shù)在區(qū)間上單調遞減,在區(qū)間上單調遞增;
Ⅱ.當時,函數(shù)在區(qū)間上單調遞增.
(2)時,,
則,
由(1)知,函數(shù)在區(qū)間上單調遞增,
所以當時,,即,
∴.
①當時,在區(qū)間上恒成立,即在上單調遞增,
∴(合題意).
②當時,
由,得,且在上單調遞增,
又,,,,
故在上存在唯一的零點,當時,,
即在上遞減,此時,知在上遞減,
此時與已知矛盾(不合題意),
綜上:滿足條件的實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,是一塊邊長為7米的正方形鐵皮,其中是一半徑為6米的扇形,已經(jīng)被腐蝕不能使用,其余部分完好可利用.工人師傅想在未被腐蝕部分截下一個有邊落在BC與CD上的長方形鐵皮,其中P是上一點.設,長方形的面積為S平方米.
(1)求S關于的函數(shù)解析式;
(2)設,求S關于t的表達式以及S的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知AB是圓O的直徑,C,D是圓上不同兩點,且,,圓O所在平面.
(1)求直線PB與CD所成角;
(2)若PB與圓O所在平面所成角為,且,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費對年銷售量(單位:t)的影響.該公司對近5年的年宣傳費和年銷售量數(shù)據(jù)進行了研究,發(fā)現(xiàn)年宣傳費x(萬元)和年銷售量y(單位:t)具有線性相關關系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計量的值.
(1)根據(jù)表中數(shù)據(jù)建立年銷售量y關于年宣傳費x的回歸方程;
(2)已知這種產(chǎn)品的年利潤z與x,y的關系為,根據(jù)(1)中的結果回答下列問題:
①當年宣傳費為10萬元時,年銷售量及年利潤的預報值是多少?
②估算該公司應該投入多少宣傳費,才能使得年利潤與年宣傳費的比值最大.
附:回歸方程中的斜率和截距的最小二乘估計公式分別為
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修 4-4]參數(shù)方程與極坐標系
在平面直角坐標系中,已知曲線: ,以平面直角坐標系的原點為極點, 軸正半軸為極軸,取相同的單位長度建立極坐標系.已知直線 : .
(Ⅰ)試寫出直線的直角坐標方程和曲線的參數(shù)方程;
(Ⅱ)在曲線上求一點,使點到直線的距離最大,并求出此最大值.
[選修 4-5]不等式選講
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓()的離心率是,點在短軸上,且。
(1)球橢圓的方程;
(2)設為坐標原點,過點的動直線與橢圓交于兩點。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某電動車售后服務調研小組從汽車市場上隨機抽取20輛純電動汽車調查其續(xù)駛里程(單次充電后能行駛的最大里程),被調查汽車的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計結果分成5組:,繪制成如圖所示的頻率分布直方圖.
(1)求續(xù)駛里程在的車輛數(shù);
(2)求續(xù)駛里程的平均數(shù);
(3)若從續(xù)駛里程在的車輛中隨機抽取2輛車,求其中恰有一輛車的續(xù)駛里程在內的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com