【題目】已知數(shù)列的前n項和為,且,令.
(Ⅰ)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)若,用數(shù)學歸納法證明是18的倍數(shù).
【答案】(1)(2)見解析
【解析】試題分析:(1)由 ,得出當 時, ,兩式相減,整理得出 ,易證明數(shù)列 是等差數(shù)列;(2) ,按照數(shù)學歸納法的步驟進行證明即可.
試題解析:(Ⅰ)當n=1時, ,∴.
當n≥2時, ,
∴,即.
∴.
即當n≥2時.
∵,∴數(shù)列是首項為5,公差為3的等差數(shù)列.
∴,即.
∴.
(Ⅱ).
①當n=1時, ,顯然能被18整除;
②假設n=k 時, 能被18整除,
則當n=k+1時,
=
=
=
=,
∵k≥1,
∴能被18整除.
又能被18整除,
∴能被18整除,即當n=k+1時結(jié)論成立.
由①②可知,當時, 是18的倍數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}的前n項和為Sn,n∈N*.已知a1=1,a2=,a3=,且當n≥2時,4Sn+2+5Sn=8Sn+1+Sn-1.
(1)求a4的值;
(2)證明:為等比數(shù)列;
(3)求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的右上方.
(1)求圓C的方程;
(2)過點M(1,0)的直線與圓C交于A,B兩點(A在x軸上方),問在x軸正半軸上是否存在定點N,使得x軸平分∠ANB?若存在,請求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過曲線C1:-=1(a>0,b>0)的左焦點F1作曲線C2:x2+y2=a2的切線,設切點為M,直線F1M交曲線C3:y2=2px(p>0)于點N,其中曲線C1與C3有一個共同的焦點,若|MF1|=|MN|,則曲線C1的離心率為( )
A. B. -1 C. +1 D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F(1,0),拋物線E:x2=2py的焦點為M.
(1)若過點M的直線l與拋物線C有且只有一個交點,求直線l的方程;
(2)若直線MF與拋物線C交于A,B兩點,求△OAB的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】葫蘆島市某高中進行一項調(diào)查:2012年至2016年本校學生人均年求學花銷(單位:萬元)的數(shù)據(jù)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代號 | 1 | 2 | 3 | 4 | 5 |
年求學花銷 | 3.2 | 3.5 | 3.8 | 4.6 | 4.9 |
(1)求關于的線性回歸方程;
(2)利用(1)中的回歸方程,分析2012年至2016年本校學生人均年求學花銷的變化情況,并預測該地區(qū)2017年本校學生人均年求學花銷情況.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在坐標原點,焦點在軸上的橢圓,離心率為且過點,過定點的動直線與該橢圓相交于、兩點.
(1)若線段中點的橫坐標是,求直線的方程;
(2)在軸上是否存在點,使為常數(shù)?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我們知道,如果集合AS,那么S的子集A的補集為SA={x|x∈S,且xA}.類似地,對于集合A、B,我們把集合{x|x∈A,且xB}叫作集合A與B的差集,記作A-B.據(jù)此回答下列問題:
(1)若A={1,2,3,4},B={3,4,5,6},求A-B;
(2)在下列各圖中用陰影表示集合A-B.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com