【題目】下列命題是假命題的是( )

A. 某企業(yè)有職工150人,其中高級(jí)職稱15人,中級(jí)職稱45人,一般職員90人,若用分層抽樣的方法抽出一個(gè)容量為30的樣本,則一般職員應(yīng)抽出18人;

B. 用獨(dú)立性檢驗(yàn)(列聯(lián)表法)來考察兩個(gè)分類變量是否有關(guān)系時(shí),算出的隨機(jī)變量的值越大,說明“有關(guān)系”成立的可能性越大;

C. 已知向量,,則的必要條件;

D. ,則點(diǎn)的軌跡為拋物線.

【答案】D

【解析】

根據(jù)分層抽樣的概念易得,解出方程即可判斷為真;用獨(dú)立性檢驗(yàn)(列聯(lián)表法)的判定方法即可得出B為真;根據(jù)充分條件和必要條件的定義以及向量的數(shù)量積的應(yīng)用,進(jìn)行判斷即可得到C為真;可將原式化為,表示動(dòng)點(diǎn)到定點(diǎn)和到動(dòng)直線距離相等的點(diǎn)的軌跡,但是定點(diǎn)在定直線上,故可判斷D.

設(shè)一般職員應(yīng)抽出人,根據(jù)分層抽樣的概念易得,解得,即一般職員應(yīng)抽出18人,故A為真;

用獨(dú)立性檢驗(yàn)(列聯(lián)表法)來考察兩個(gè)分類變量是否有關(guān)系時(shí),算出的隨機(jī)變量的值越大,說明“有關(guān)系”成立的可能性越大,可知B為真;

,則,即不成立,若,則,即成立,故的必要條件,即C為真;

方程即:,

化簡(jiǎn)得,

即表示動(dòng)點(diǎn)到定點(diǎn)的距離和到直線的距離相等的點(diǎn)的集合,

在直線上,故其不滿足拋物線的定義,即D為假,故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大提出,堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村真脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機(jī)摘下了個(gè)蜜柚進(jìn)行測(cè)重,其質(zhì)量分別在,,,,(單位:克)中,其頻率分布直方圖如圖所示,

(Ⅰ)已經(jīng)按分層抽樣的方法從質(zhì)量落在,的蜜柚中抽取了個(gè),現(xiàn)從這個(gè)蜜柚中隨機(jī)抽取個(gè)。求這個(gè)蜜柚質(zhì)量均小于克的概率:

(Ⅱ)以各組數(shù)據(jù)的中間值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有個(gè)蜜柚等待出售,某電商提出了兩種收購方案:

方案一:所有蜜柚均以元/千克收購;

方案二:低于克的蜜柚以元/個(gè)收購,高于或等于克的以元/個(gè)收購.

請(qǐng)你通過計(jì)算為該村選擇收益最好的方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

2)設(shè)函數(shù),證明:是函數(shù)有兩個(gè)零點(diǎn)的充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱,平面平面,,分別是的中點(diǎn).

(1)證明:;

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓()的離心率為,圓軸正半軸交于點(diǎn),圓在點(diǎn)處的切線被橢圓截得的弦長(zhǎng)為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)圓上任意一點(diǎn)處的切線交橢圓于點(diǎn),試判斷是否為定值?若為定值,求出該定值;若不是定值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,過點(diǎn)的直線與拋物線交于、兩點(diǎn),且當(dāng)直線斜率為2時(shí),

1)求拋物線的標(biāo)準(zhǔn)方程;

2)過點(diǎn)作拋物線的兩條弦,問在軸上是否存在一定點(diǎn),使得直線過點(diǎn)時(shí),為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)若不等式對(duì)于任意成立,求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓C過點(diǎn),焦點(diǎn),圓O的直徑為

(1)求橢圓C及圓O的方程;

(2)設(shè)直線l與圓O相切于第一象限內(nèi)的點(diǎn)P

①若直線l與橢圓C有且只有一個(gè)公共點(diǎn),求點(diǎn)P的坐標(biāo);

②直線l與橢圓C交于兩點(diǎn).若的面積為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】鳳鳴山中學(xué)的高中女生體重 (單位:kg)與身高(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)),用最小二乘法近似得到回歸直線方程為,則下列結(jié)論中不正確的是(

A.具有正線性相關(guān)關(guān)系

B.回歸直線過樣本的中心點(diǎn)

C.若該中學(xué)某高中女生身高增加1cm,則其體重約增加0.85kg

D.若該中學(xué)某高中女生身高為160cm,則可斷定其體重必為50.29kg.

查看答案和解析>>

同步練習(xí)冊(cè)答案