【題目】設(shè)f(x)=si n-2cos2+1.

(1)f(x)的最小正周期;

(2)若函數(shù)y=f(x)y=g(x)的圖象關(guān)于直線x=1對(duì)稱(chēng),求當(dāng)x時(shí)y=g(x)的最大值

【答案】(1)f(x)=,T=8.(2)

【解析】試題分析:(1)先根據(jù)兩角差正弦公式、二倍角余弦公式以及輔助角公式將函數(shù)化為基本三角函數(shù)形式,再根據(jù)正弦函數(shù)性質(zhì)求周期(2)根據(jù)對(duì)稱(chēng)性,利用轉(zhuǎn)移法求函數(shù)y=g(x),再根據(jù)自變量范圍,利用余弦函數(shù)性質(zhì)求最值

試題解析:(1)f(x)=sinxcoscosxsincosx=sinx-cosx=sin

故f(x)的最小正周期為T(mén)==8.

(2)法一:

在y=g(x)的圖象上任取一點(diǎn)(x,g(x)),它關(guān)于x=1的對(duì)稱(chēng)點(diǎn)為(2-xg(x)).

由題設(shè)條件,點(diǎn)(2-xg(x))在y=f(x)的圖象上,從而g(x)=f(2-x)=sinsincos,

當(dāng)0x時(shí),x+,因此y=g(x)在區(qū)間上的最大值為ymaxcos.

法二:

因區(qū)間關(guān)于x=1的對(duì)稱(chēng)區(qū)間為, 且y=g(x)與y=f(x)的圖象關(guān)于直線x=1對(duì)稱(chēng)故y=g(x)在區(qū)間上的最大值為y=f(x)在區(qū)間上的最大值.

由(1)知f(x)=sin.當(dāng)x2時(shí),x-.

因此y=g(x)在區(qū)間上的最大值為ymaxsin.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)點(diǎn)且斜率為的直線與圓交于點(diǎn)兩點(diǎn).

(1)求的取值范圍;

(2)請(qǐng)問(wèn)是否存在實(shí)數(shù)k使得其中為坐標(biāo)原點(diǎn)如果存在請(qǐng)求出k的值,并;如果不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

1當(dāng)時(shí),求曲線在點(diǎn)處的切線的斜率;

2當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心為坐標(biāo)原點(diǎn),其離心率為,橢圓的一個(gè)焦點(diǎn)和拋物線的焦點(diǎn)重合.

(1)求橢圓的方程

(2)過(guò)點(diǎn)的動(dòng)直線交橢圓、兩點(diǎn),試問(wèn):在平面上是否存在一個(gè)定點(diǎn),使得無(wú)論如何轉(zhuǎn)動(dòng),以為直徑的圓恒過(guò)點(diǎn),若存在,說(shuō)出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,過(guò)作垂直于軸的直線交橢圓兩點(diǎn),且滿(mǎn)足.

(1)求橢圓的離心率;

(2)過(guò)作斜率為的直線兩點(diǎn). 為坐標(biāo)原點(diǎn),若的面積為,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|ax-x2|+2b(a,bR).

(1)當(dāng)b=0時(shí),若不等式f(x)2xx[0,2]上恒成立求實(shí)數(shù)a的取值范圍;

(2)已知a為常數(shù)且函數(shù)f(x)在區(qū)間[0,2]上存在零點(diǎn)求實(shí)數(shù)b的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)準(zhǔn)備投入適當(dāng)?shù)膹V告費(fèi)對(duì)產(chǎn)品進(jìn)行促銷(xiāo),在一年內(nèi)預(yù)計(jì)銷(xiāo)售量Q(萬(wàn)件)與廣告費(fèi)x(萬(wàn)元)之間的函數(shù)關(guān)系為Q= (x>1)已知生產(chǎn)該產(chǎn)品的年固定投入為3萬(wàn)元,每生產(chǎn)1萬(wàn)件該產(chǎn)品另需再投入32萬(wàn)元,若每件銷(xiāo)售價(jià)為“年平均每件生產(chǎn)成本(生產(chǎn)成本不含廣告費(fèi))150%”與“年平均每件所占廣告費(fèi)的50%”之和

(1)試將年利潤(rùn)W(萬(wàn)元)表示為年廣告費(fèi)x(萬(wàn)元)的函數(shù);(年利潤(rùn)=銷(xiāo)售收入-成本)

(2)當(dāng)年廣告費(fèi)為多少萬(wàn)元時(shí),企業(yè)的年利潤(rùn)最大?最大年利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)甲,乙兩種產(chǎn)品均需用兩種原料,已知生產(chǎn)1噸每種產(chǎn)品需用原料及每天原料的可用限額如下表所示,如果生產(chǎn)1噸甲,乙產(chǎn)品可獲利潤(rùn)分別為3萬(wàn)元、4萬(wàn)元,則該企業(yè)可獲得最大利潤(rùn)為__________萬(wàn)元.

原料限額

A(噸)

3

2

12

B(噸)

1

2

8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線與橢圓有相同的焦點(diǎn),實(shí)半軸長(zhǎng)為

(1)求雙曲線的方程;

(2)若直線與雙曲線有兩個(gè)不同的交點(diǎn),且(其中為原點(diǎn)),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案