【題目】對(duì)于空間兩不同的直線,兩不同的平面,有下列推理:

(1), (2),(3)

(4), (5)

其中推理正確的序號(hào)為( )

A. (1)(3)(4) B. (2)(3)(5) C. (4)(5) D. (2)(3)(4)(5)

【答案】C

【解析】因?yàn)?/span>時(shí), 可以在平面內(nèi),所以1不正確;因?yàn)?/span>時(shí), 可以在平面內(nèi),所以(2不正確;因?yàn)?/span>時(shí)可以在平面內(nèi),所以(3不正確;根據(jù)線面垂直的性質(zhì)定理可得,(4正確;根據(jù)線面平行的性質(zhì)及線面垂直的性質(zhì)可得5正確,推理正確的序號(hào)為(4)(5),故選C.

【方法點(diǎn)晴】本題主要考查線面平行的判定與性質(zhì)、面面垂直的性質(zhì)及線面垂直的判定與性質(zhì),屬于難題. 空間直線、平面平行或垂直等位置關(guān)系命題的真假判斷,常采用畫(huà)圖(尤其是畫(huà)長(zhǎng)方體)、現(xiàn)實(shí)實(shí)物判斷法(如墻角、桌面等)、排除篩選法等;另外,若原命題不太容易判斷真假,可以考慮它的逆否命題,判斷它的逆否命題真假,原命題與逆否命題等價(jià).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)滿(mǎn)足: ,且該函數(shù)的最小值為1.

(1)求此二次函數(shù)的解析式;

(2)若函數(shù)的定義域?yàn)?/span>(其中),問(wèn)是否存在這樣的兩個(gè)實(shí)數(shù), ,使得函數(shù)的值域也為?若存在,求出 的值;若不存在,請(qǐng)說(shuō)明理由.

(3)若對(duì)于任意的,總存在使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ﹣k( +lnx),若x=2是函數(shù)f(x)的唯一一個(gè)極值點(diǎn),則實(shí)數(shù)k的取值范圍為(
A.(﹣∞,e]
B.[0,e]
C.(﹣∞,e)
D.[0,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面有命題:

①y=|sinx-|的周期是2π;

②y=sinx+sin|x|的值域是[0,2] ;

③方程cosx=lgx有三解;

為正實(shí)數(shù),上遞增,那么的取值范圍是;

⑤在y=3sin(2x+)中,若f(x)=f(x2)=0,則x1-x2必為的整數(shù)倍;

⑥若A、B是銳角△ABC的兩個(gè)內(nèi)角,則點(diǎn)P(cosB-sinA,sinB-cosA)在第二象限;

⑦在中,若,則鈍角三角形。

其中真命題個(gè)數(shù)為(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)點(diǎn)M(0,1)的直線l交橢圓C: 于A,B兩點(diǎn),F(xiàn)1為橢圓的左焦點(diǎn),當(dāng)△ABF1周長(zhǎng)最大時(shí),直線l的方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)是定義在實(shí)數(shù)集上的奇函數(shù),并且在區(qū)間上是單調(diào)遞增的函數(shù).

(1)研究并證明函數(shù)在區(qū)間上的單調(diào)性;

(2)若實(shí)數(shù)滿(mǎn)足不等式,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓M: 和點(diǎn) ,動(dòng)圓P經(jīng)過(guò)點(diǎn)N且與圓M相切,圓心P的軌跡為曲線E.
(1)求曲線E的方程;
(2)點(diǎn)A是曲線E與x軸正半軸的交點(diǎn),點(diǎn)B,C在曲線E上,若直線AB,AC的斜率分別是k1 , k2 , 滿(mǎn)足k1k2=9,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在直三棱柱ABCA1B1C1中,AC3,BC4AB5,AA1=4,點(diǎn)DAB的中點(diǎn).

(1)求證:ACBC1;

(2)求證:AC1平面CDB1

(3)求異面直線AC1B1C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓過(guò)點(diǎn),且與圓 ()關(guān)于軸對(duì)稱(chēng).

(I)求圓的方程;

(II)若有相互垂直的兩條直線,都過(guò)點(diǎn),且被圓所截得弦長(zhǎng)分別是,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案